Skip to main content
Log in

Quasi-Chaplygin Systems and Nonholonimic Rigid Body Dynamics

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Suslov nonholonomic rigid body problem studied in by Fedorov and Kozlov (Am. Math. Soc. Transl. Ser. 2 168:141–171, 1995), Jovanović (Reg. Chaot. Dyn. 8(1):125–132, 2005), and Zenkov and Bloch (J. Geom. Phys. 34(2):121–136, 2000) can be regarded almost everywhere as a generalized Chaplygin system. Furthermore, this provides a new example of a multidimensional nonholonomic system which can be reduced to a Hamiltonian form by means of Chaplygin reducing multiplier. Since we deal with Chaplygin systems in the local sense, the invariant manifolds of the integrable examples are not necessary tori

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. Itogi Nauki i Tekhniki. Sovr. Probl. Mat. Fundamental’nye Napravleniya, vol. 3. VINITI, Moscow (1985); English translation: Encyclopaedia of mathematical sciences, vol. 3. Berlin Heidelberg New York: Springer (1989)

  2. Bates L., Cushman R. (1999). What is a completely integrable nonholonomic dynamical system?. Rep. Math. Phys. 44(1,2):29–35

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Beljaev, A.V.: Motion of a multidimensional rigid body with a fixed point in a gravitational force field. Mat. Sb. 114(156) no. 3, 465–470 (1981) [Russian]

    Google Scholar 

  4. Bloch A.M., Krishnaprasad P.S., Marsden J.E., Murray R.M. (1996). Nonholonomical mechanical systems with symmetry. Arch. Rational Mech. Anal. 136:21–99

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bolsinov A.V., Jovanović B. (2003). Non-commutative integrability, moment map and geodesic flows. Ann. Global Anal. Geom. 23(4):305–322 arXiv: math-ph/0109031

    Article  MATH  MathSciNet  Google Scholar 

  6. Cantrijn F., Cortes J., de Leon M., Martin de Diego D. (2002). On the geometry of generalized Chaplygin systems. Math. Proc. Cambridge Philos. Soc. 132(2):323–351 arXiv: math.DS/0008141

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Chaplygin S.A. (1911). On the theory of the motion of nonholonomic systems. Theorem on the reducing multiplier. Mat. Sbornik 28(2):303–314 [Russian]

    Google Scholar 

  8. Chaplygin S.A. (1981). Selected works. Nauka, Moskva [Russian]

    Google Scholar 

  9. Ehlers, K., Koiller, J., Montgomery, R., Rios, P.: Nonholonomic systems via moving frames: Cartan’s equivalence and Chaplygin Hamiltonization. The breadth of symplectic and Poisson geometry, pp 75–120. Progr. Math., vol. 232, Birkhäuser Boston, Boston (2005) arXiv: math-ph/0408005

  10. Fedorov Yu.N., Kozlov V.V. (1995). Various aspects of n-dimensional rigid body dynamics. Am. Math. Soc. Transl. Ser. 2, 168:141–171

    MathSciNet  Google Scholar 

  11. Fedorov Yu.N., Jovanović B. (2004). Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces. J. Non. Sci. 14:341–381 arXiv: math-ph/0307016

    MATH  Google Scholar 

  12. Fedorov, Yu.N., Jovanović, B.: Integrable nonholonomic geodesic flows on compact Lie groups. In: Bolsinov, A.V., Fomenko, A.T., Oshemkov, A.A. (eds.) Topological methods in the theory of integrable systems. Cambrige Scientific Publ., pp. 115–152 (2005) arXiv: math-ph/0408037

  13. Jovanović B. (2003). Some multidimensional integrable cases of nonholonomic rigid body dynamics. Reg. Chaot. Dyn. 8(1):125–132 arXiv: math-ph/0304012

    Article  MATH  Google Scholar 

  14. Kharlamova-Zabelina E.I. (1957). Rapid motion of a rigid body about a fixed point under the presence of a nonholonomic constraint. Vestnik Moskov. University, Ser. Mat. Mekh. Astr. Fiz. 12(6):25–34 [Russian]

    Google Scholar 

  15. Koiller J. (1992). Reduction of some classical non-holonomic systems with symmetry. Arch. Rational Mech. 118:113–148

    Article  MATH  MathSciNet  Google Scholar 

  16. Kozlov, V.V.: On the integrability theory of equations of nonholonomic mechanics. Adv. Mech. 8(3), 85–107 (1985) [Russian]; English translation: Regular Chaotic Dyn. 7(2), 161–176 (2002)

  17. Marle C.M. (1995). Reduction of constrained mechanical systems and stability of relative equilibria. Comm. Math. Phys. 318:295–318

    Article  ADS  MathSciNet  Google Scholar 

  18. Neimark, J.I., Fufaev, N.A.: Dynamics of nonholonomic systems. Trans. of Math. Mon. 33, American Mathematics Society, Providence. (1972)

  19. Okuneva, G.G.: Qualitative analysis of the integrable variants of the Suslov nonholonomic problem. Vestn. Mosk. Un. Ser. 1, Mat. Meh. no. 5, 59–64 (1987) [Russian]

  20. Okuneva G.G. (1998). Integrable Variants of Non-Holonomic Rigid Body Problems. Z. Angew. Math. Mech. 78(12): 833–840

    Article  MATH  MathSciNet  Google Scholar 

  21. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Lax representation with a spectral parameter for the Kovalevskaya top and its generalizations. (Russian) Funktsional. Anal. i Prilozhen. 22(2), 87–88 (1988) English translation: Funct. Anal. Appl. 22(2), 158–160 (1988)

  22. Stanchenko, S.: Nonholonomic Chaplygin systems. Prikl. Mat. Mekh. 53(1), 16–23 (1989); English translation: J. Appl. Math. Mech. 53(1), 11–17 (1989)

  23. Suslov, G.: Theoretical mechanic. Gostekhizdat, Moskva-Leningrad (1951) [Russian]

  24. Tatarinov, Y.V.: Construction of compact invariant manifolds, not diffeomorphic to tori, in one integrable nonholonomic problem. Uspehi Matem. Nauk, no. 5, pp. 216 (1985) [Russian]

  25. Veselov, A.P., Veselova, L.E.: Flows on Lie groups with nonholonomic constraint and integrable non–Hamiltonian systems. Funkt. Anal. Prilozh. 20(4), 65–66 (1986) [Russian]; English translation: Funct. Anal. Appl. 20(4), 308–309 (1986)

  26. Zenkov D.V., Bloch A.M. (2000). Dynamics of the n-dimensional Suslov problem. J. Geom. Phys. 34(2):121–136

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Fedorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, Y.N., Jovanović, B. Quasi-Chaplygin Systems and Nonholonimic Rigid Body Dynamics. Lett Math Phys 76, 215–230 (2006). https://doi.org/10.1007/s11005-006-0069-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-006-0069-3

Keywords

Mathematics Subjects Classifications

Navigation