Skip to main content
Log in

Reduction of WO3 to WC nanoparticles by the reflux reaction

  • Published:
Materials Science Aims and scope

Tungsten carbide (WC) is an important material mostly used for cutting-tool applications. The reduction of WO3 to WC is realized by using several techniques. The existing chemical processes involved in its reduction are long and energy consuming. In our work, we make efforts to reduce WO3 to WC by the reflux reaction technique. The composite obtained after the reflux reaction is analyzed to check the feasibility of conversion of WO3 to WC. The preliminary study demonstrates the feasibility of this conversion. The proposed technique seems to be promising and cost-effective for the low-temperature synthesis of ultrafine WC particles. The synthesized powders are studied with the help of X-ray diffraction, scanning electron microscope, energy dispersive X-rays, and transmission electron microscopy for the phase identification and microstructural analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. Cha Seung, H. Hong Soon, H. Ha Gook, and Byung K. Kim, “Mechanical properties of WC–10Co cemented carbides sintered from nanocrystalline spray conversion processed powders,” Int. J. Refract. Met. Hard. Mater., 19, No. 4–6, 397–403 (2001).

    Google Scholar 

  2. J. M. Adeff Sanchez, A. Ordoneza, and R. Gonzalez, “HIP after sintering of ultrafine WC–Co hard metals,” Int. J. Refract. Met. Hard. Mater., 23, No. 3, 193–198 (2005).

    Article  Google Scholar 

  3. M. Sherif El-Eskandarany, A. A. Mahday, H. A. Ahmed, and A. H. Amer, “Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations,” J. Alloy Comp., 312, No. 1–2, 315–325 (2000).

    Article  Google Scholar 

  4. K. Jia, T. E. Fischer, and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC–Co composites,” Nanostruct. Mater., 10, No. 5, 875–891 (1998).

    Article  CAS  Google Scholar 

  5. K. Jia and T. E. Fischer, “Abrasion resistance of nanostructured and conventional cemented carbides,” Wear, 200, 206–214 (1996).

    Article  CAS  Google Scholar 

  6. C. S. Pande and K. P. Cooper, “Nanomechanics of Hall–Petch relationship in nanocrystalline materials,” Progr. Mater. Sci., 54, 689–706 (2009).

    Article  CAS  Google Scholar 

  7. F. Zhang, J. Shen, and J. Sun, “Processing and properties of carbon nanotubes-nano-WC–Co composites,” Mat. Sci. Eng. A, 38, Nos. 1–2, 86–91 (2004).

    Article  Google Scholar 

  8. L. E. McCandlish, B. H. Kear, and S. J. Bhatia, Spray Conversion Process for the Production of Nanophase Composite Powders, US Patent 535226 (1994).

  9. L. Gao, B. H. Kear, and P. Seegopaul, Method of Forming Tungsten Particles, US Patent 5919428 (1999).

  10. P. Seegopaul and L. Gao, Method of Forming Nanograin Tungsten Carbide and Recycling Tungsten Carbide, US patent 6524366 (2003).

  11. B. K. Kim, G. G. Ha, and Y. Woo, Method of Production WC/Co Cemented Carbide Using Grain Growth Inhibitor, US Patent 6511551 (2003).

  12. G. Lee, G. H. Ha, and B. K. Kim, “Synthesis of nanostructured W-base composite powders by chemical processes,” J. Korean. Inst. Metal. Mater., 37, No. 10, 1233–1237 (1999).

    CAS  Google Scholar 

  13. X. M. Ma, Z. Ling, J. Gang, and Y. D. Dong, “Preparation and structure of bulk nanostructured WC–Co alloy by high energy ball-milling,” J. Mater. Sci. Lett., 16, No. 12, 968–970 (1997).

    Article  CAS  Google Scholar 

  14. R. Uribe, C. Baudin, L. Mazerolles, and D. Michel, “Sub-micron sized Al2TiO5 powders prepared by high-energy ball milling,” J. Mater. Sci., 36, No. 21, 5105–5113 (2001).

    Article  CAS  Google Scholar 

  15. F. L. Zhang, C. Y. Wang, and M. Zhu, “Nanostructured WC/Co composite powder prepared by high energy ball milling,” Scripta. Mater., 49, No. 11, 1123–1128 (2003).

    Article  CAS  Google Scholar 

  16. H. J. Fecht, “Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition,” Nanostruct. Mater., 1, No. 2, P.125–130 (1992).

    Article  CAS  Google Scholar 

  17. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, “Nanocrystalline metals prepared by high-energy ball milling,” Metall. Mater. Trans. A, 21, No. 9, 2333–2337 (1990).

    Article  Google Scholar 

  18. R. Porat, S. Berger, and A. Rosen, “Sintering behavior and mechanical properties of nanocrystalline WC/Co,” Mater. Sci. Forum, 225–227, No. 1, 629–634 (1996).

    Article  Google Scholar 

  19. B. G. Butler, J. Lu, Z. G. Z. Fang, and R. K. Rajamani, “Production of nanometric tungsten carbide powders by planetary milling,” Int. J. Powder Metall., 43, No. 1, 35–43 (2007).

    CAS  Google Scholar 

  20. G. L. Tan and X. J. Wu, “Mechanochemical synthesis of nanocrystalline tungsten carbide powders,” Powder Metall., 41, No. 4, 300–302 (1998).

    CAS  Google Scholar 

  21. Z. G. Ban and L. L. Shaw, “Synthesis and processing of nanostructured WC–Co materials,” J. Mater. Sci., 37, No. 16, 3397–3403 (2002).

    Article  CAS  Google Scholar 

  22. J. Hojo, T. Oku, and A. Kato, “Tungsten carbide powders produced by the vapor phase reaction of the WCl6–CH4 –H2 system,” J. Less-Common Metal., 59, No. 1, 85–95 (1978).

    Article  CAS  Google Scholar 

  23. M. Fitzsimmons and V. K. Sarin, “Comparison of WCl6–CH4 –H2 and WF6–CH4 –H2 systems for growth of WC coatings,” Surf. Coat. Technol., 76, No. 1–3, 250–255 (1995).

    Article  Google Scholar 

  24. J. C. Kim and B. K. Kim, “Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process,” Scripta. Mater., 50, No. 7, 969–972 (2004).

    Article  CAS  Google Scholar 

  25. X. Tang, R. Haubner, B. Lux, and B. Kieffer, “Preparation of ultrafine CVD WC powders deposited from WCl6 gas mixtures,” J. Phys. IV Colloq., 510, 13–20 (1995).

    Google Scholar 

  26. C. W. Won, B. S. Chun, and H. Y. Sohn, “Preparation of ultrafine tungsten carbide powder by CVD method from WCl6–C2H2–H2 mixtures,” J. Mater. Res., 8, No. 10, 2702–2708 (1993).

    Article  CAS  Google Scholar 

  27. G. Leclercq, M. Kamal, J. M. Giraudon, and P. Devassine, “Study of the preparation of bulk powder tungsten carbides by temperature programmed reaction with CH4 + H2 mixtures,” J Catal., 158, 142 (1996).

    Article  CAS  Google Scholar 

  28. F. F. P. Medeiros, S. A. De Oliveira, C. P. De Souza, et al., “Synthesis of tungsten carbide through gas-solid reaction at low temperatures,” Mater. Sci. A, 315, No. 1–2, 58–62 (2001).

    Article  Google Scholar 

  29. L. Gao and B. H. Kear, “Low temperature carburization of high surface area tungsten powders,” Nanostruct. Mater., 5, No. 5, 555–569 (1995).

    Article  CAS  Google Scholar 

  30. H. Y. Sohn, T. Ryu, J. W. Choi, et al., “The chemical vapor synthesis of inorganic nanopowders,” Jom-Us, 59, No. 12, 44–49 (2007).

    Article  CAS  Google Scholar 

  31. Y. Moriysohi, M. Futaki, S. Komatsu, and T. Ishigaki, “The preparation and characterization of ultrafine tungsten powder,” J. Mater. Sci. Lett., 16, No. 5, 347–349 (1997).

    Article  CAS  Google Scholar 

  32. L. R. Tong and R. G. Reddy, “Synthesis of titanium carbide nanopowders by thermal plasma,” Scripta. Mater., 52, No. 12, 1253–1258 (2005).

    Article  CAS  Google Scholar 

  33. A. Kumar, K. Singh, and O. P. Pandey, “Reduction of WO3 to nano-WC by thermochemical reaction route,” Physica. E, 41, 677–684 (2009).

    Article  CAS  Google Scholar 

  34. C. S. Barrett and T. B. Massalski, Structure of Metals, Pergamon, Oxford (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Pandey.

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 49, No. 1, pp. 93–98, January–February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Kumar, A., Singh, S. et al. Reduction of WO3 to WC nanoparticles by the reflux reaction. Mater Sci 49, 102–109 (2013). https://doi.org/10.1007/s11003-013-9588-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-013-9588-0

Keywords

Navigation