Skip to main content
Log in

Coastal Bathymetry from Hyperspectral Remote Sensing Data: Comparisons with High Resolution Multibeam Bathymetry

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

We present a large-scale quantitative test of a hyperspectral remote-sensing reflectance algorithm. We show that coastal bathymetry can be adequately derived through model inversions using data from the Airborne Visible-Infrared Imaging Spectrometer instrument. Data are analyzed from a shore-perpendicular transect 5 km offshore Sarasota, Florida at water depths ranging from 10 m to 15.5 m. Derived bottom depths are compared to a high-resolution multibeam bathymetry survey. Model-derived depths are biased 4.9% shallower than the mean of the multibeam depths with an RMS error of 7.83%. These results suggest that the model performs well for retrieving bottom depths from hyperspectral data in subtropical coastal areas in water depths ranging from 10 m to 15.5 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bierwirth P.N., Lee T.J. and Burne R.V. (1993). Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogramm. Eng. Rem. S. 59: 331–338

    Google Scholar 

  • Carder K.L., Reinersman P., Chen R.F. and Muller-Karger F.E. (1993). AVIRIS calibration and application in coastal oceanic environments. Remote Sens. Environ. 44: 205–216

    Article  Google Scholar 

  • Carder K.L., Liu C., Lee Z.P., English D.C., Patten J., Chen R.F. and Ivey J.E. (2003). Illumination and turbidity effects on observing faceted bottom elements with uniform lambertian albedos. Limnol. Oceanogr. 48: 355–363

    Article  Google Scholar 

  • Clark R.K., Fay T.H. and Walker C.L. (1987). Bathymetry calculations with Landsat 4 TM imagery under a generalized ratio assumption. Appl. Optics 26: 4036–4038

    Google Scholar 

  • Durand D., Bijaoui J. and Cauneau F. (2000). Optical remote sensing of shallow-water environmental parameters: A feasibility study. Remote Sens. Environ. 73: 152–161

    Article  Google Scholar 

  • Eastwood, M.L., Green, R.O., Sarture, C.M., Chippindale, B.J., Chovit, C.J., Faust, J.A., Johnson, D.L., Monacos, S.P. and Raney, J., 2000, Recent improvements to the AVIRIS sensor: Flight season 2000. in: Proceedings of the Tenth Annual JPL Airborne Geoscience Workshop, Pasadena, California

  • Green E.P., Mumby P.J., Edwards A.J. and Clark C.D. (1996). A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manage. 24: 1–40

    Article  Google Scholar 

  • Gordon H.R. and Brown O. (1974). Influence of bottom depth and albedo on the diffuse reflectance of a flat homogeneous ocean. Appl. Optics 13: 2153–2159

    Google Scholar 

  • He R. and Weisberg R.H. (2003). West Florida shelf circulation and temperature budget for the 1998 fall transition. Cont. Shelf Res. 23: 777–800

    Article  Google Scholar 

  • Jerlov N.G. (1976). Marine Optics. Elsevier, New York

    Google Scholar 

  • Lee Z., Carder K.L., Hawes S.K., Steward R.G., Peacock T.G. and Davis C.O. (1994). Model for the interpretation of hyperspectral remote-sensing reflectance. Appl. Optics 33: 5721–5732

    Google Scholar 

  • Lee Z., Carder K.L., Mobley C.D., Steward R.G. and Patch J.S. (1999). Hyperspectral remote sensing for shallow waters II. Deriving bottom depths and water properties by optimization. Appl. Optics 38: 3831–3843

    Article  Google Scholar 

  • Lee Z., Carder K.L., Chen R.F. and Peacock T.G. (2001). Properties of the water column and bottom derived from AVIRIS data. J. Geophys. Res. 106: 11639–11651

    Article  Google Scholar 

  • Louchard E., Reid P.R., Stephens F.C., Davis C.O., Leathers R.A. and Downes T.V. (2003). Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach. Limnol. Oceanogra. 48: 511–521

    Article  Google Scholar 

  • Lyzenga D.R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Appl. Optics 17: 379–383

    Article  Google Scholar 

  • Lyzenga D.R. (1985). Shallow-water bathymetry using combined Lidar and passive multispectral scanner data. Int. J. Remote Sen. 6: 115–125

    Article  Google Scholar 

  • Maritorena R.J., Morel A. and Gentilli B. (1994). Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnol. Oceanogr. 39: 1689–1703

    Article  Google Scholar 

  • McIntyre, M.L., Naar, D.F., Carder, K.L., Howd, P.A., Lewis, J.M., Donahue, B.T. and Chen, R.F., 2002, Comparison of bathymetry and bottom characteristics from hyperspectral remote sensing data and shipborne acoustic measurements. in: Eos Transactions of the American Geophysical Union Fall Meeting Supplements, 6–10 December 2002, p. 47. San Francisco, California

  • McIntyre M.L. (2003). Testing a model for deriving bathymetry from airborne hyperspectral data by comparing with multibeam sonar data. MS thesis. University of South Florida, St. Petersburg, Florida

    Google Scholar 

  • Mobley C.D. (1993). Comparison of numerical models for computing underwater light fields. Appl. Optics 32: 7484–75041

    Google Scholar 

  • Mustard J.F., Staid M.I. and Fripp W.J. (2001). A semianalytical approach to the calibration of AVIRIS data to reflectance over water application in a temperate estuary. Remote Sens. Environ. 75: 335–349

    Article  Google Scholar 

  • Naar, D.F., Donahue, B.T., DeWitt, N., Farmer, A.S., Jarrett, B., Palmsten, M., Reynolds, B.J. and Wilder, D., 1999, Preliminary results from a EM 3000 multibeam class survey along the west coast of the Florida carbonate platform. in: Eos Transactions of the American Geophysical Union Fall Meeting Supplements, 13–17 December 1999, p 46. San Francisco, California

  • O’Neill N.T. and Miller J.R. (1989). On calibration of passive optical bathymetry through depth soundings analysis and treatment of errors resulting from the spatial variation of environmental parameters. Int. J. Remote Sen. 10: 1481–1501

    Article  Google Scholar 

  • Philpot W.D. (1989). Bathymetric mapping with passive multispectral imagery. Appl. Optics 28: 1569–1578

    Article  Google Scholar 

  • Sandidge J.C. and Holyer R.J. (1998). Coastal bathymetry from hyperspectral observations of water radiance. Remote Sens. Environ. 65: 341–352

    Article  Google Scholar 

  • Vane G., Green R.O., Chrien T.G., Enmark H.T., Hansen E.G. and Porter W.M. (1993). The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 44: 127–143

    Article  Google Scholar 

  • Werdell P.J. and Roesler C.S. (2003). Remote assessment of benthic substrate composition in shallow waters using multispectral reflectance. Limnol. Oceanogr. 48(1, part 2): 557–567

    Article  Google Scholar 

  • Zhan H, Lee Z.P., Shi P., Chen C. and Carder K.L. (2003). Retrieval of water optical properties for optically deep waters using genetic algorithms. IEEE T. Geosci. Remote Sens. 41: 1123–1128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. McIntyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntyre, M.L., Naar, D.F., Carder, K.L. et al. Coastal Bathymetry from Hyperspectral Remote Sensing Data: Comparisons with High Resolution Multibeam Bathymetry. Mar Geophys Res 27, 129–136 (2006). https://doi.org/10.1007/s11001-005-0266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-005-0266-y

Keywords

Navigation