Skip to main content

Advertisement

Log in

Apoptosis-Inducing Active Protein from Marine Clam Donax variabilis on NSCLC Cells

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The marine environment has been represented as the most vital source of bioactive constituents. In the present work, we intended to purification, characterization, and investigation of the apoptotic effect of the bioactive molecule from edible mollusc Donax variabilis on NSCLC cell lines. The bioactive molecules were purified using Anion Exchange Chromatographic method with different millimolar of NaCl concentrations. The fractions were further performed to check the proliferative effect on A549 and NCI-H23 cells by MTT assay. The molecular mass of the active purified protein fraction (PPF-V) was 40 kDa, determined by SDS-PAGE. Furthermore, MALDI-TOF/MS was disclosed that it shared a 91% protein sequence similarity with FMRFamide peptide. Meanwhile, the apoptotic effect of PPF-V on A549 and NCI-H23 cells were investigated. Immunoblot analysis found that the PPF-V treatment groups showed the upregulation of Bax, Cytochrome-c, Cleaved Caspase-9 and 3 expression and downregulation of Bcl-2 protein expression on both NSCLC cell lines. In addition, purified protein fraction induced the loss of mitochondrial membrane potential and generation of reactive oxygen species (ROS) on lung cancer cells. Altogether, our results proved that the PPF-V from Donax variabilis inducing apoptosis against NSCLC cell lines, which could be a potential natural candidate for lung cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal S, Adholeya A, Deshmukh SK (2016) The pharmacological potential of non-ribosomal peptides from marine sponge and tunicates. Front Pharmacol 7:333

    Article  CAS  Google Scholar 

  • Ahmad TB, Liu L, Kotiw M, Benkendorff K (2018) Review of anti-inflammatory, immune-modulatory and wound healing properties of molluscs. J Ethnopharmacol 10(210):156–178

    Article  Google Scholar 

  • Boice A, Bouchier-Hayes L (2020) Targeting apoptotic caspases in cancer. Biochim Biophys Acta (BBA). https://doi.org/10.1016/j.bbamcr.2020.118688

    Article  Google Scholar 

  • Campbell KJ, Tait SW (2018) Targeting BCL-2 regulated apoptosis in cancer. Open Biol 8(5):180002

    Article  Google Scholar 

  • Chen L, Zeng Y, Zhou SF (2018) Role of apoptosis in cancer resistance to chemotherapy. Current understanding of apoptosis - Programmed cell death, Yusuf Tutar, IntechOpen. https://doi.org/10.5772/intechopen.80056

  • Chen DW, Su J, Liu XL, Yan DM, Lin Y, Jiang WM, Chen XH (2012) Amino acid profiles of bivalve mollusks from Beibu Gulf, China. J Aquat Food Prod Technol 21(4):369–379

    Article  CAS  Google Scholar 

  • Cheng-Hua L, Jian-Min Z, Lin-Sheng S (2009) A review of advances in research on marine molluscan antimicrobial peptides and their potential application in aquaculture. Molluscan Res 29(1):17

    Google Scholar 

  • Cheung RC, Ng TB, Wong JH (2015) Marine peptides: bioactivities and applications. Mar Drugs 13(7):4006–4043

    Article  CAS  Google Scholar 

  • Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R (2017) Marine mollusk-derived agents with antiproliferative activity as promising anticancer agents to overcome chemotherapy resistance. Med Res Rev 37(4):702–801

    Article  CAS  Google Scholar 

  • Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25(Suppl. 2):41–59

    Article  Google Scholar 

  • Dang VT, Benkendorff K, Green T, Speck P (2015) Marine snails and slugs: a great place to look for antiviral drugs. J Virol 89(16):8114–8118

    Article  CAS  Google Scholar 

  • Duma N, Santana-Davila R, Molina JR (2019) Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc 94(8):1623–1640

    Article  CAS  Google Scholar 

  • Fahmy SR, Soliman AM (2013) In vitro antioxidant, analgesic and cytotoxic activities of Sepia officinalis ink and Coelatura aegyptiaca extracts. Afr J Pharm Pharmacol 7(22):1512–1522

    Article  Google Scholar 

  • King J (1965) The dehydrogenase of oxidoreductase lactate dehydrogenase. In: King JC (ed) Practical clinical enzymology. van D Wostrand Company, London, pp 83–93

  • Fernando IS, Nah JW, Jeon YJ (2016) Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 48:22–30

    Article  CAS  Google Scholar 

  • Follin-Arbelet V, Hofgaard PO, Hauglin H, Naderi S, Sundan A, Blomhoff R, Bogen B, Blomhoff HK (2011) Cyclic AMP induces apoptosis in multiple myeloma cells and inhibits tumor development in a mouse myeloma model. BMC Cancer 11(1):301

    Article  CAS  Google Scholar 

  • Gilmore A, King L (2019) Emerging approaches to target mitochondrial apoptosis in cancer cells. F1000 Res. https://doi.org/10.12688/f1000research.18872.1

    Article  Google Scholar 

  • Huang CY, Ju DT, Chang CF, Reddy PM, Velmurugan BK (2017) A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine 7(4):23

    Article  Google Scholar 

  • Huseby S, Gausdal G, Keen TJ, Kjaerland E, Krakstad C, Myhren L, Brønstad K, Kunick C, Schwede F, Genieser HG, Kleppe R (2011) Cyclic AMP induces IPC leukemia cell apoptosis via CRE-and CDK-dependent Bim transcription. Cell Death Dis 2(12):e237

    Article  CAS  Google Scholar 

  • Kehinde OA, Mariam YA, Adebimpe OO, Blessing AA (2015) Traditional utilization and biochemical composition of six mollusc shells in Nigeria. Rev Biol Trop 63(2):459–464

    Article  Google Scholar 

  • Kim EJ, Juhnn YS (2015) Cyclic AMP signaling reduces sirtuin 6 expression in non-small cell lung cancer cells by promoting ubiquitin-proteasomal degradation via inhibition of the Raf-MEK-ERK (Raf/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase) pathway. J Biol Chemi 290(15):9604–9613

    Article  CAS  Google Scholar 

  • Kim SK, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2(1):1–9

    Article  CAS  Google Scholar 

  • Latire T, Legendre F, Bigot N, Carduner L, Kellouche S, Bouyoucef M, Carreiras F, Marin F, Lebel JM, Galéra P, Serpentini A (2014) Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts. PLoS ONE 9(6):e99931

    Article  Google Scholar 

  • Lee JS, Shih PY, Schaedel ON, Quintero-Cadena P, Rogers AK, Sternberg PW (2017) FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proc Natl Acad Sci USA 114(50):E10726–E10735

    Article  CAS  Google Scholar 

  • Lopez J, Tait SW (2015) Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer 112(6):957–962

    Article  CAS  Google Scholar 

  • López-Vera E, Aguilar MB, de la Cotera EP (2008) FMRFamide and related peptides in the phylum mollusca. Peptides 29(2):310–317

    Article  Google Scholar 

  • McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 7(4):a008656

    Google Scholar 

  • Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I (2014) The FMRFamide-like peptide family in nematodes. Front Endocrinol 5:90

    Article  Google Scholar 

  • Plaza A, Bifulco G, Keffer JL, Lloyd JR, Baker HL, Bewley CA (2009) Celebesides A−C and theopapuamides B−D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem 74(2):504–512

    Article  CAS  Google Scholar 

  • Roufayel R (2016) Regulation of stressed-induced cell death by the Bcl-2 family of apoptotic proteins. Mol Membr Biol 33(6–8):89–99

    Article  CAS  Google Scholar 

  • Ruiz-Torres V, Encinar JA, Herranz-López M, Pérez-Sánchez A, Galiano V, Barrajón-Catalán E, Micol V (2017) An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 22(7):1037

    Article  Google Scholar 

  • Sahayanathan GJ, Guha S, Chinnasamy A (2018) Antiproliferative effect of crude proteins extracted from marine clam Donax variabilis on human cancer cell lines. Int J Pharm Sci Res 9:3180–3188

    CAS  Google Scholar 

  • Sahbaz BD, Iyison NB (2018) Neuropeptides as ligands for GPCRs. Ligand, Chandraleka Saravanan and Bhaskar Biswas, IntechOpen. https://doi.org/10.5772/intechopen.73504

  • Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30(7):631–637

    Article  CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  Google Scholar 

  • Tabakaeva OV, Tabakaev AV, Piekoszewski W (2018) Nutritional composition and total collagen content of two commercially important edible bivalve molluscs from the Sea of Japan coast. J Food Sci Technol 55(12):4877–4886

    Article  CAS  Google Scholar 

  • Toolaram AP, Kuemmerer K, Schneider M (2014) Environmental risk assessment of anti-cancer drugs and their transformation products: a focus on their genotoxicity characterization-state of knowledge and short comings. Mutat Res 760:18–35

    Article  CAS  Google Scholar 

  • Wei X, Nieves K, Rodríguez AD (2010) Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean sea sponge Neopetrosia proxima. Bioorg Med Chem Lett 20(19):5905–5908

    Article  CAS  Google Scholar 

  • Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379(6564):466–469

    Article  CAS  Google Scholar 

  • Wu D, Wang X, Sun H (2018) The role of mitochondria in cellular toxicity as a potential drug target. Cell Biol Toxicol 34:87–91

    Article  CAS  Google Scholar 

  • Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q (2015) Antibacterial and antifungal compounds from marine fungi. Mar Drugs 13(6):3479–3513

  • Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37(1):266

    Article  CAS  Google Scholar 

  • Zatylny-Gaudin C, Favrel P (2014) Diversity of the RFamide peptide family in mollusks. Front Endocrinol 5:178

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Proteomics facility of Molecular Biophysics Unit, Indian Institute of Science, Bangalore for the MALDI-TOF/MS analysis. The authors are grateful to acknowledge the DST-PURSE Phase II program for their financial support which enabled this research study to be completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arulvasu Chinnasamy.

Ethics declarations

Conflict of interest

The other authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahayanathan, G.J., Chinnasamy, A. Apoptosis-Inducing Active Protein from Marine Clam Donax variabilis on NSCLC Cells. Int J Pept Res Ther 27, 931–939 (2021). https://doi.org/10.1007/s10989-020-10139-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10139-y

Keywords

Navigation