Skip to main content
Log in

NickFects, Phosphorylated Derivatives of Transportan 10 for Cellular Delivery of Oligonucleotides

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Oligonucleotide-based gene regulation has a high potential in gene therapy, but the plasma membrane is impermeable for nucleic acid polymers and, consequently, an efficient and non-toxic transfection agent is needed for their delivery into the cell. In this study we present a novel series, NickFects, of chemically modified TP10 peptide-based delivery vectors used for the cellular delivery of single-stranded oligonucleotides. These carriers, obtained by replacement of Ile8 by threonine in stearyl-TP10 and by modifying of tyrosine and/or threonine, respectively, by phosphorylation formed 300–500 nm in size peptide:oligonucleotide nanocomplexes with negative surface charges. The highest splice-correcting effect was obtained when phosphorotiate 2′-O-methyl oligonucleotides were transduced into cells by NickFect1 (NF1) or NickFect2 (NF2). In addition, we also show how a small modification (one or two negative charges) in peptide sequence can affect its ability to deliver ONs into cells and increase their potency in the splicing redirection assay. Our studies demonstrate that NF1 and NF2 have higher transfection efficacy for oligonucleotides as compared to the most commonly used transfection agent Lipofectamine™ 2000 and lead to higher biological response in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2′-OMe ON:

Phosphorothioate 2′-O-methyl RNA

SCO:

Splice-correcting oligonucleotides

CPPs:

Cell-penetrating peptides

PBS:

Phosphate buffered saline

TFA:

Trifluoroacetic acid

TP10:

Transportan 10

ON:

Oligonucleotide

SFM:

Serum-free medium

FM:

Serum-containing medium

OD:

Optical density

HOBt:

Hydroxybenzotriazole

HBTU:

O-Benzotriazole-N,N,N′,N′-tetramethyl-uronium-hexafluoro-phosphate

DIEA:

Diisopropylethylamine

TIS:

Triisopropylsilane

References

  • Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  PubMed  CAS  Google Scholar 

  • Deshayes S, Morris M, Heitz F, Divita G (2008) Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 60:537–547

    Article  PubMed  CAS  Google Scholar 

  • Fattal E, Couvreur P, Dubernet C (2004) “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev 56:931–946

    Article  PubMed  CAS  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  PubMed  CAS  Google Scholar 

  • Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K, Harashima H, Sugiura Y (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 12:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Gabhann FM, Annex BH, Popel AS (2010) Gene therapy from the perspective of systems biology. Curr Opin Mol Ther 12:570–577

    PubMed  Google Scholar 

  • Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546

    Article  PubMed  CAS  Google Scholar 

  • Kang SH, Cho MJ, Kole R (1998) Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37:6235–6239

    Article  PubMed  CAS  Google Scholar 

  • Khalil IA, Futaki S, Niwa M, Baba Y, Kaji N, Kamiya H, Harashima H (2004) Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Ther 11:636–644

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Ishii A, Miyata K, Lee Y, Wu S, Oba M, Nishiyama N, Kataoka NK (2010) Introduction of stearoyl moieties into a biocompatible cationic polyaspartamide derivative, PAsp(DET), with endosomal escaping function for enhanced siRNA-mediated gene knockdown. J Control Release 145:141–148

    Article  PubMed  CAS  Google Scholar 

  • Lehto T, Abes R, Oskolkov N, Suhorutšenko J, Copolovici DM, Mäger I, Viola JR, Simonson OE, Ezzat K, Guterstam P, Eriste E, Smith CI, Lebleu B, Andaloussi El S, Langel Ü (2010) Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. J Control Release 141:42–51

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Diamond SL (2001) Nonviral gene therapy and its delivery systems. Curr Pharm Biotechnol 2:1–17

    Article  PubMed  CAS  Google Scholar 

  • Mäe M, El Andaloussi S, Lundin P, Oskolkov N, Johansson HJ, Guterstam P, Langel Ü (2009) A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release 134:221–227

    Article  PubMed  Google Scholar 

  • Midoux P, Pichon C, Yaouanc JJ, Jaffres PA (2009) Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 157:166–178

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25:2730–2736

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Deshayes S, Heitz F, Divita G (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100:201–217

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kogure K, Futaki S, Harashima H (2007) Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 119:360–367

    Article  PubMed  CAS  Google Scholar 

  • Niidome T, Urakawa M, Takaji K, Matsuo Y, Ohmori N, Wada A, Hirayama T, Aoyagi H (1999) Influence of lipophilic groups in cationic alpha-helical peptides on their abilities to bind with DNA and deliver genes into cells. J Pept Res 54:361–367

    Article  PubMed  CAS  Google Scholar 

  • Padari K, Koppel K, Lorents A, Hällbrink M, Mano M, Pedroso De Lima MC, Pooga M (2010) S4(13)-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells. Bioconjug Chem 21:774–783

    Article  PubMed  CAS  Google Scholar 

  • Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM (2007) Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 8:349–357

    Article  PubMed  CAS  Google Scholar 

  • Pooga M, Hällbrink M, Zorko M, Langel Ü (1998) Cell penetration by transportan. FASEB J 12:67–77

    PubMed  CAS  Google Scholar 

  • Rothbard JB, Kreider E, Vandeusen CL, Wright L, Wylie BL, Wender PA (2002) Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem 45:3612–3618

    Article  PubMed  CAS  Google Scholar 

  • Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726

    Article  PubMed  CAS  Google Scholar 

  • Son KK, Patel DH, Tkach D, Park A (2000a) Cationic liposome and plasmid DNA complexes formed in serum-free medium under optimum transfection condition are negatively charged. Biochim Biophys Acta 1466:11–15

    Article  PubMed  CAS  Google Scholar 

  • Son KK, Tkach D, Hall KJ (2000b) Efficient in vivo gene delivery by the negatively charged complexes of cationic liposomes and plasmid DNA. Biochim Biophys Acta 1468:6–10

    Article  PubMed  CAS  Google Scholar 

  • Soomets U, Lindgren M, Gallet X, Hällbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, Brasseur R, Langel Ü (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467:165–176

    Article  PubMed  CAS  Google Scholar 

  • Tonges L, Lingor P, Egle R, Dietz GP, Fahr A, Bahr M (2006) Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 12:1431–1438

    Article  PubMed  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75:280–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study presented in this article was supported by Swedish Research Council (VR-NT); by the Center for Biomembrane Research, Stockholm; by Cepep Eesti OÜ; by the Knut and Alice Wallenberg’s Foundation; by the EU through the European Regional Development Fund through the Center of Excellence in Chemical Biology and in Genomics, Estonia; by the targeted financing SF0180027s08 and SF0180019s11 from the Estonian Ministry of Education and Research; by the DoRa Program of The European Social Fund; by Archimedes Foundation and by the Estonian Science Foundation (ESF 8705, Mobilitas—MJD64). The authors would also like to thank J. Pae and C. Juks for assistance in peptide synthesis, S. El-Andaloussi for fruitful discussions and M. Kure for an excellent technical assistance in electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Oskolkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oskolkov, N., Arukuusk, P., Copolovici, DM. et al. NickFects, Phosphorylated Derivatives of Transportan 10 for Cellular Delivery of Oligonucleotides. Int J Pept Res Ther 17, 147–157 (2011). https://doi.org/10.1007/s10989-011-9252-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-011-9252-1

Keywords

Navigation