Skip to main content
Log in

Central limit theorems for moving average processes*

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let \( {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} \) be a stationary sequence of real random variables with E ξ 0 = 0 and infinite variance. Furthermore, assume that \( {{\left( {{c_n}} \right)}_{{n\in \mathbb{Z}}}} \) is a sequence of real numbers and \( {X_n}=\sum {_{{j\in \mathbb{Z}}}{c_j}{\xi_{n-j }}} \) is a moving average processes driven by \( {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} \). By using a decomposition of the moving average processes, a central limit theorem for the partial sums \( \sum\nolimits_{k=1}^n {{X_k}} \) is established. As applications, we obtain some central limit theorems for stationary dependent sequences \( {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} \), such as associated sequence, martingale difference, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Anderson, The Statistical Analysis of Time Series, John Wiley & Sons, Inc., New York, London, Sydney, 1971.

    MATH  Google Scholar 

  2. M. Csorgő, B. Szyszkowicz, and Q.Y. Wang, Donsker’s theorem for self-normalized partial sums processes, Ann. Probab., 31(3):1228–1240, 2003.

    Article  MathSciNet  Google Scholar 

  3. R. Davis and S. Resnick, More limit theory for the sample correlation function of moving averages, Stoch. Process. Appl., 20(2):257–279, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Djellout and A. Guillin, Large and moderate deviations for moving average processes, Ann. Fac. Sci. Toulouse, Math. (6), 10(1):23–31, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Djellout, A. Guillin, and L. Wu, Moderate deviations of empirical periodogram and nonlinear functionals of moving average processes, Ann. Inst. Henri Poincaré, Probab. Stat., 42(4):393–416, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  6. Z.S. Dong, X.L. Tan, and X.Y. Yang, Moderate deviation principles for moving average processes of real stationary sequences, Stat. Probab. Lett., 74(2):139–150, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.D. Esary, F. Proschan, and D.W. Walkup, Association of random variables, with applications, Ann. Math. Stat., 38:1466–1474, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application, Academic Press, Inc., New York, London, 1980.

    MATH  Google Scholar 

  9. E.J. Hannan, Multiple Time Series, John Wiley & Sons, Inc., New York, London, Sydney, 1970.

    Book  MATH  Google Scholar 

  10. I.A. Ibragimov, Some limit theorems for stationary processes, Teor. Veroyatn. Primen., 7:361–392, 1962 (in Russian). English. transl.: Theory Probab. Appl., 7(4):349–382, 1962.

    Article  Google Scholar 

  11. T.F. Jiang, M.B. Rao, and X.C. Wang, Large deviations for moving average processes, Stoch. Process. Appl., 59(2):309–320, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  13. Y.X. Li and L.X. Zhang, Precise asymptotics in the law of the iterated logarithm of moving-average processes, Acta Math. Sin., Engl. Ser., 22(1):143–156, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z.Y. Lin and D.G. Li, Functional limit theorem for moving average processes generated by dependent random variables, Prog. Nat. Sci., 16(3):266–273, 2006.

    MATH  Google Scholar 

  15. S. Louhichi and P. Soulier, The central limit theorem for stationary associated sequences, Acta Math. Hung., 97(1–2):15–36, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.A. Maller, A theorem on products of random variables, with application to regression, Aust. J. Stat., 23(2):177–185, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Miao, Large deviation principles for moving average processes of real stationary sequences, Acta Appl. Math., 106(2):177–184, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Peligrad and H.L. Sang, Central limit theorem for linear processes with infinite variance, J. Theor. Probab., 2013 (in press).

  19. M. Peligrad and S. Utev, Central limit theorem for linear processes, Ann. Probab., 25(1):443–456, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Peligrad and S. Utev, Central limit theorem for stationary linear processes, Ann. Probab., 34(4):1608–1622, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  21. P.C.B. Phillips and V. Solo, Asymptotics for linear processes, Ann. Stat., 20(2):971–1001, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. B.L.S. Prakasa Rao, Hajek–Renyi-type inequality for associated sequences, Stat. Probab. Lett., 57(2):139–143, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Rosalsky, A generalization of the iterated logarithm law for weighted sums with infinite variance, Z. Wahrscheinlichkeitstheor. Verw. Geb., 58(3):351–372, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Tyran-Kamińska, Functional limit theorems for linear processes in the domain of attraction of stable laws, Stat. Probab. Lett., 80(11–12):975–981, 2010.

    Article  MATH  Google Scholar 

  25. L.M. Wu, On large deviations for moving average processes, in Probability, Finance and Insurance, World Sci. Publ., River Edge, NJ, 2004, pp. 15–49.

    Google Scholar 

  26. R. Yokoyama, An iterated logarithm result for partial sums of a stationary linear process, Yokohama Math. J., 31(1–2):139–148, 1983.

    MathSciNet  MATH  Google Scholar 

  27. R. Yokoyama, An iterated logarithm theorem for some stationary linear processes, Yokohama Math. J., 40(2):143–148, 1993.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Miao.

Additional information

*This work is supported by NSFC (11001077, 11171093), NCET (NCET-11-0945), the Henan Province Foundation and Frontier Technology Research Plan (112300410205), and the Plan for Scientific Innovation Talent of Henan Province (124100510014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Y., Ge, L. & Xu, S. Central limit theorems for moving average processes* . Lith Math J 53, 80–90 (2013). https://doi.org/10.1007/s10986-013-9195-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-013-9195-7

MSC

Keywords

Navigation