Skip to main content
Log in

Quantile difference estimation with censoring indicators missing at random

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In this paper, we define estimators of distribution functions when the data are right-censored and the censoring indicators are missing at random, and establish their strong representations and asymptotic normality. Besides, based on empirical likelihood method, we define maximum empirical likelihood estimators and smoothed log-empirical likelihood ratios of two-sample quantile difference in the presence and absence of auxiliary information, respectively, and prove their asymptotic distributions. Simulation study and real data analysis are conducted to investigate the finite sample behavior of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Cummings FJ, Gray R, Davis TE, Tormey DC, Harris JE, Falkson GG, Arseneau J (1986) Tamoxifen versus placebo: double-blind adjuvant trial in elderly women with stage II breast cancer. NCI Monogr 1:119–123

    Google Scholar 

  • Dikta G (1998) On semiparametric random censorship models. J Stat Plan Inference 66(2):253–279

    Article  MathSciNet  Google Scholar 

  • Dinse GE (1982) Nonparametric estimation for partially-complete time and type of failure data. Biometrics 38(2):417–431

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Faisal S, Heumann C (2022) Bootstrap inference for weighted nearest neighbors imputation. Commun Stat Simul Comput 51(6):2842–2857

    Article  MathSciNet  Google Scholar 

  • Goetghebeur EJ, Ryan L (1995) Analysis of competing risks survival data when some failure types are missing. Biometrika 82(4):821–833

    Article  MathSciNet  Google Scholar 

  • Goldman M, Kaplan DM (2018) Non-parametric inference on (conditional) quantile differences and interquantile ranges, using L-statistics. Econom J 21(2):136–169

    Article  MathSciNet  Google Scholar 

  • Kong CJ, Liang HY (2020) Empirical likelihood of conditional quantile difference with left-truncated and dependent data. J Korean Stat Soc 49(4):1106–1130

    Article  MathSciNet  Google Scholar 

  • Li X, Wang Q (2012) The weighted least square based estimators with censoring indicators missing at random. J Stat Plan Inference 142(11):2913–2925

    Article  MathSciNet  Google Scholar 

  • Liang HY, de Uña-Álvarez J, Iglesias-Pérez MC (2012) Asymptotic properties of conditional distribution estimator with truncated, censored and dependent data. Test 21(4):790–810

    Article  MathSciNet  Google Scholar 

  • Lo SH (1991) Estimating a survival function with incomplete cause-of-death data. J Multivar Anal 39(2):217–235

    Article  MathSciNet  Google Scholar 

  • Marron JS, Padgett WJ (1987) Asymptotically optimal bandwidth selection for kernel density estimators from randomly right-censored samples. Ann Stat 15(4):1520–1535

    Article  MathSciNet  Google Scholar 

  • Owen AB (2001) Empirical likelihood. Chapman and Hall/CRC, New York

    Google Scholar 

  • Shen J, He S (2007) Empirical likelihood for the difference of quantiles under censorship. Stat Pap 48(3):437–457

    Article  MathSciNet  Google Scholar 

  • Shen Y, Liang HY (2018) Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random. Comput Stat Data Anal 117:1–18

    Article  MathSciNet  Google Scholar 

  • Subramanian S (2004) The missing censoring-indicator model of random censorship. Handb Stat 23:123–141

    Article  MathSciNet  Google Scholar 

  • Subramanian S (2011) Multiple imputations and the missing censoring indicator model. J Multivar Anal 102(1):105–117

    Article  MathSciNet  Google Scholar 

  • Tsai WY, Jewell NP, Wang MC (1987) A note on the product-limit estimator under right censoring and left truncation. Biometrika 74(4):883–886

    Article  Google Scholar 

  • Tsiatis AA, Davidian M, Mcneney B (2002) Multiple imputation methods for testing treatment differences in survival distributions with missing cause of failure. Biometrika 89(1):238–244

    Article  MathSciNet  Google Scholar 

  • Wang Q, Ng KW (2008) Asymptotically efficient product-limit estimators with censoring indicators missing at random. Stat Sin 18(2):749–768

    MathSciNet  Google Scholar 

  • Wang Q, Qin Y (2010) Empirical likelihood confidence bands for distribution functions with missing responses. J Stat Plan Inference 140(9):2778–2789

    Article  MathSciNet  Google Scholar 

  • Xun L, Zhou Y (2017) Estimators and their asymptotic properties for quantile difference with left truncated and right censored data. Acta Math Sin 60(3):451–464 (in Chinese)

    MathSciNet  Google Scholar 

  • Yang H, Zhao Y (2017) Smoothed jackknife empirical likelihood for the difference of two quantiles. Ann Inst Stat Math 69(5):1059–1073

    Article  MathSciNet  Google Scholar 

  • Yang H, Yau C, Zhao Y (2014) Smoothed empirical likelihood inference for the difference of two quantiles with right censoring. J Stat Plan Inference 146:95–101

    Article  MathSciNet  Google Scholar 

  • Zhou Y (1996) A note on the TJW product-limit estimator for truncated and censored data. Stat Probab Lett 26(4):381–387

    Article  MathSciNet  Google Scholar 

  • Zhou W, Jing BY (2003) Smoothed empirical likelihood confidence intervals for the difference of quantiles. Stat Sin 13(1):83–95

    MathSciNet  Google Scholar 

  • Zhou X, Sun L, Ren H (2000) Quantile estimation for left truncated and right censored data. Stat Sin 10(4):1217–1229

    MathSciNet  Google Scholar 

  • Zhou Y, Wan AT, Yuan Y (2011) Combining least-squares and quantile regressions. J Stat Plan Inference 141(12):3814–3828

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor, associate editor, and anonymous referees for their helpful comment and suggestions. This work was supported by the National Natural Science Foundation of China (12071348) and Fundamental Research Funds for the Central Universities, China (2023-3-ZD-04), and the Natural Science Foundation of Shandong Province, China (ZR2023QA115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ying Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 6.1

From (2.1), we have \(\frac{1}{n_l}\sum _{i=1}^{n_l}\varphi _i(\widehat{\varvec{\rho }}_{0\,l})=0\). By Taylor expansion, under (C1)(1)–(2), then

$$ 0=\frac{1}{n_l}\sum _{i=1}^{n_l}\varphi _i(\widehat{\varvec{\rho }}_{0\,l}) =\frac{1}{n_l}\sum _{i=1}^{n_l}\varphi _i(\varvec{\rho }_{0\,l}) + \frac{1}{n_l}\sum _{i=1}^{n_l} \triangledown \varphi _i(\varvec{\rho }_{0\,l})(\widehat{\varvec{\rho }}_{0\,l}-\varvec{\rho }_{0\,l}) + o_p(\Vert \widehat{\varvec{\rho }}_{0\,l}-\varvec{\rho }_{0\,l}\Vert ). $$

From (C1)(3) and central-limit theorem, it can be easily checked that \(\widehat{\varvec{\rho }}_{0\,l}-\varvec{\rho }_{0\,l}=O_p(n_l^{-1/2})\) and

$$\begin{aligned} \sqrt{n_l}(\widehat{\varvec{\rho }}_{0l}-\varvec{\rho }_{0l})=&-\Big [\frac{1}{n_l}\sum _{i=1}^{n_l}\triangledown \varphi _i(\varvec{\rho }_{0l})\Big ]^{-1}\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l} \varphi _i(\varvec{\rho }_{0l})+o_p(1) \xrightarrow {d}N(0,I_l^{-1}(\varvec{\rho }_{0l})). \end{aligned}$$

\(\square \)

Proof of Lemma 6.2

It is sufficient to show that

$$\frac{1}{\sqrt{n_l}} \sum _{i=1}^{n_l} \frac{\widehat{\delta }_{li}}{1-{\widehat{G}}_l(Z_{li})}\big [\Lambda _l\big (\frac{F_l^{-1}(\tau ) -Z_{li}}{a_l}\big )-\tau \big ]\xrightarrow {d} N(0,\Xi _l).$$

To prove this, under (C1)–(C4), we first prove

$$\begin{aligned}&\frac{1}{\sqrt{n_l}} \sum _{i=1}^{n_l} \frac{\widehat{\delta }_{li}}{1-{\widehat{G}}_l(Z_{li})} \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\nonumber \\&\quad =\frac{1}{\sqrt{n_l}} \sum _{i=1}^{n_l} \frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})}{1-G_l(Z_{li})}\Big [\Lambda _l \Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\nonumber \\&\qquad +\frac{1}{n_l^{3/2}}\sum _{j< k} \Big \{\frac{\xi _{lj}\delta _{lj}+(1-\xi _{lj})m_l(Z_{lj},\textbf{X}_{lj};\varvec{\rho }_{0l})}{1-G_l(Z_{lj})}\Big [\Lambda _l \Big (\frac{F_l^{-1}(\tau )-Z_{lj}}{a_l}\Big )-\tau \Big ]\Gamma _l(Z_{lk},\textbf{X}_{lk},\xi _{lk},\xi _{lk}\delta _{lk};Z_{lj})\nonumber \\&\qquad +\frac{\xi _{lk}\delta _{lk}+(1-\xi _{lk})m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})}{1-G_l(Z_{lk})}\Big [\Lambda _l \Big (\frac{F_l^{-1}(\tau )-Z_{lk}}{a_l}\Big )-\tau \Big ]\Gamma _l(Z_{lj},\textbf{X}_{lj},\xi _{lj},\xi _{lj}\delta _{lj};Z_{lk})\Big \}\nonumber \\&\qquad +\alpha _l^{\mathrm T}I_l^{-1}(\varvec{\rho }_{0l})\frac{1}{\sqrt{n_l}} \sum _{i=1}^{n_l} \frac{\xi _{li}[\delta _{li}-m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})]\triangledown m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})}{m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})[1-m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})]} + o_p(1)\nonumber \\&\;\; := E_{l1}+E_{l2}+E_{l3}+o_p(1). \end{aligned}$$
(8.1)

In fact,

$$\begin{aligned}&\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{\widehat{\delta }_{li}}{1-{\widehat{G}}_l(Z_{li})} \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\\&\quad =\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{1-G_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\\&\qquad +\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{[1-G_l(Z_{li})]^2}[{\widehat{G}}_l(Z_{li})-G_l(Z_{li})]\Big [\Lambda _l\Big (\frac{F_l^{-1} (\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\\&\qquad +\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{(1-\xi _{li})[m_l(Z_{li},\textbf{X}_{li}; \widehat{\varvec{\rho }}_{0l})-m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})]}{1-G_l(Z_{li})} \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\\&\qquad +\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{[1-G_l(Z_{li})]^2[1-{\widehat{G}}_l(Z_{li})]}[{\widehat{G}}_l(Z_{li})-G_l(Z_{li})]^2 \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\\&\qquad +\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{(1-\xi _{li})[m_l(Z_{li},\textbf{X}_{li}; \widehat{\varvec{\rho }}_{0l})-m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})] [{\widehat{G}}_l(Z_{li})-G_l(Z_{li})]}{[1-G_l(Z_{li})][1-{\widehat{G}}_l(Z_{li})]} \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\\&\;\; :=S_1+S_2+S_3+S_4+S_5. \end{aligned}$$

By (C4), from Step 2 in the proof of Proposition 2.1, it follows that

$$\max _{1\le i\le n_l}|{\widehat{G}}_l(Z_{li})-G_l(Z_{li})|\le \sup _{0\le t\le b_l}|{\widehat{G}}_l(t)-G_l(t)|=O_p(\sqrt{\log n_l/n_l})$$

and \(S_4=O_p\big (\log n_l/\sqrt{n_l}\big )=o_p(1)\). In addition, \(S_5=O_p\big (\sqrt{\log n_l/{n_l}}\big )=o_p(1)\) by the fact \(\max _{1\le i\le n_l}|m_l(Z_{li},\textbf{X}_{li};\widehat{\varvec{\rho }}_{0\,l})-m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0\,l})|=O_p(n_l^{-1/2})\). By Proposition 2.1, we have

$$\begin{aligned} S_2\overset{a.s.}{=}\ {}&\,\frac{1}{{n_l}^{1/2}}\sum _{i=1}^{n_l}\frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{1-G_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ] \\ {}&\quad \times\Big [\frac{1}{n_l}\sum _{j=1}^{n_l}\psi _{lj}(Z_{li})+R_{G_l}(Z_{li})\Big ]\\ =&\,\frac{1}{n_l^{3/2}}\sum _{j< k} \Big \{\frac{\xi _{lj}\delta _{lj}+(1-\xi _{lj})m_l(Z_{lj},\textbf{X}_{lj}; \varvec{\rho }_{0l})}{1-G_l(Z_{lj})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{lj}}{a_l}\Big )-\tau \Big ]\\&\quad \times\Gamma _l(Z_{lk},\textbf{X}_{lk},\xi _{lk},\xi _{lk}\delta _{lk};Z_{lj})\\&+\frac{\xi _{lk}\delta _{lk}+(1-\xi _{lk})m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})}{1-G_l(Z_{lk})} \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{lk}}{a_l}\Big )-\tau \Big ]\\&\quad \times\Gamma _l(Z_{lj},\textbf{X}_{lj},\xi _{lj}, \xi _{lj}\delta _{lj};Z_{lk})\Big \}\\&-\frac{1}{{n_l}}\sum _{i=1}^{n_l}\frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})}{1-G_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big ) -\tau \Big ]\\&\quad \times\mu _l^{\mathrm T}(Z_{li})I_l^{-1}(\varvec{\rho }_{0l})\frac{1}{n_l^{1/2}}\sum _{j=1}^{n_l}\varphi _j(\varvec{\rho }_{0l}) \\ +o_p(1) := E_{l2}+E_{l3,1}+o_p(1), \end{aligned}$$

and the \(o_p(1)\) in above equation is obtained based on the fact

$$\begin{aligned} \frac{1}{{n_l}^{1/2}}\sum _{i=1}^{n_l}\frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{1-G_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]R_{G_l}(Z_{li})=o_p(1) \end{aligned}$$

and \(\frac{1}{n_l^{3/2}}\sum _{j=1}^{n_l}\frac{\xi _{lj}\delta _{lj}+(1-\xi _{lj})m_l(Z_{lj},\textbf{X}_{lj};\varvec{\rho }_{0\,l})}{1-G_l(Z_{lj})}\big [\Lambda _l\big (\frac{F_l^{-1}(\tau ) -Z_{lj}}{a_l}\big )-\tau \big ]\Gamma _l(Z_{lj},\textbf{X}_{lj},\xi _{lj},\xi _{lj}\delta _{lj};Z_{lj})=o_p(1)\). From Lemma 6.1 and using the Taylor expansion, it follows

$$\begin{aligned} S_3 =&\frac{1}{n_l}\sum _{i=1}^{n_l}\frac{(1-\xi _{li})\bigtriangledown m_l^{\mathrm T}(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})}{1-G_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big ) -\tau \Big ]\Big [I_l^{-1}(\varvec{\rho }_{0l})\frac{1}{n_l^{1/2}}\sum _{j=1}^{n_l}\varphi _j(\varvec{\rho }_{0l})\\&+o_p(1)\Big ]+O_p\Big (\frac{1}{\sqrt{n_l}}\Big )\\ =&\frac{1}{n_l}\sum _{i=1}^{n_l}\frac{(1-\xi _{li})\bigtriangledown m_l^{\mathrm T}(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{1-G_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big ) -\tau \Big ]I_l^{-1}(\varvec{\rho }_{0l})\frac{1}{n_l^{1/2}}\sum _{j=1}^{n_l}\varphi _j(\varvec{\rho }_{0l})+o_p(1)\\ :=&E_{l3,2}+o_p(1), \end{aligned}$$

and the remainder term \(O_p(n_l^{-1/2})\) is obtained by (C1)(2) and the fact \(\widehat{\varvec{\rho }}_{0\,l}-\varvec{\rho }_{0\,l}=O_p(n_l^{-1/2})\). Further

$$\begin{aligned}&E_{l3,1}+E_{l3,2}\\&\quad =\frac{1}{n_l}\sum _{i=1}^{n_l}\Big \{\Big [\frac{(1-\xi _{li})\bigtriangledown m_l^{\mathrm T}(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{1-G_l(Z_{li})}-\frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li}; \varvec{\rho }_{0l})}{1-G_l(Z_{li})}\mu _l^{\mathrm T}(Z_{li})\Big ]\\&\qquad \times \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau \Big ]\Big \}I_l^{-1}(\varvec{\rho }_{0l}) \frac{1}{n_l^{1/2}}\sum _{j=1}^{n_l}\varphi _j(\varvec{\rho }_{0l})\\&\quad =E\Big \{\Big [\frac{(1-\xi _{l})\bigtriangledown m_l^{\mathrm T}(Z_{l},\textbf{X}_{l};\varvec{\rho }_{0l})}{1-G_l(Z_{l})}-\frac{\xi _{l}\delta _{l}+(1-\xi _{l})m_l(Z_{l},\textbf{X}_{l};\varvec{\rho }_{0l})}{1-G_l(Z_{l})} \mu _l^{\mathrm T}(Z_{l})\Big ]\Big [\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-Z_l}{a_l}\Big )-\tau \Big ]\Big \}\\&\qquad \times I_l^{-1}(\varvec{\rho }_{0l})\frac{1}{n_l^{1/2}}\sum _{j=1}^{n_l}\varphi _j(\varvec{\rho }_{0l})+o_p(1):=E_{l3,3} I_l^{-1}(\varvec{\rho }_{0l})\frac{1}{n_l^{1/2}}\sum _{j=1}^{n_l}\varphi _j(\varvec{\rho }_{0l})+o_p(1). \end{aligned}$$

As for \(E_{l3,3}\), we have

$$\begin{aligned} E_{l3,3} =&\,E\Big \{\Big [\frac{(1-\xi _{l})\bigtriangledown m_l^{\mathrm T}(Z_{l},\textbf{X}_{l}; \varvec{\rho }_{0l})}{1-G_l(Z_{l})}-\frac{\delta _l}{1-G_l(Z_{l})}\mu _l^{\mathrm T}(Z_{l})\Big ] \big [I(Z_l\le F_l^{-1}(\tau ))-\tau \big ]\Big \}\\&+E\Big \{\Big [\frac{(1-\xi _{l})\bigtriangledown m_l^{\mathrm T}(Z_{l},\textbf{X}_{l}; \varvec{\rho }_{0l})}{1-G_l(Z_{l})}-\frac{\delta _l}{1-G_l(Z_{l})}\mu _l^{\mathrm T}(Z_{l})\Big ] \\&\quad \times \Big [\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-Z_l}{a_l}\Big )-I(Z_l\le F_l^{-1}(\tau ))\Big ]\Big \} :=\alpha _l^{\mathrm T}+E_{l3,4}. \end{aligned}$$

Next, we show \(E_{l3,4}=O(a_l)\). It is sufficient to show that

$$\begin{aligned}&E_{l3,4}^{(1)}:=E\Big \{\frac{(1-\xi _{l})\bigtriangledown m_l^{\mathrm T}(Z_{l},\textbf{X}_{l};\varvec{\rho }_{0l})}{1-G_l(Z_{l})}\Big [\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-Z_l}{a_l}\Big )-I(Z_l\le F_l^{-1}(\tau ))\Big ]\Big \}=O(a_l),\\&E_{l3,4}^{(2)}:=E\Big \{\frac{\delta _l}{1-G_l(Z_{l})}\mu _l^{\mathrm T}(Z_{l}) \Big [\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-Z_l}{a_l}\Big )-I(Z_l\le F_l^{-1}(\tau ))\Big ]\Big \}=O(a_l). \end{aligned}$$

By (C3), we know that \(w_l(\cdot )\) are density functions with compact supports. Without loss of generality, assume that the support of \(w_l(\cdot )\) is \([\underline{c}_l,{\overline{c}}_l]\), then

$$\begin{aligned} \Lambda _l\Big (\frac{F_l^{-1}(\tau )-y}{a_l}\Big )=\left\{ \begin{array}{ll} 1, &{} \text{ if }~ y< F_l^{-1}(\tau )-a_l{\overline{c}}_l,\\ \Lambda _l\Big (\frac{F_l^{-1}(\tau )-y}{a_l}\Big ), &{} \text{ if }~ F_l^{-1}(\tau ) -a_l{\overline{c}}_l\le y\le F_l^{-1}(\tau )-a_l\underline{c}_l,\\ 0, &{} \text{ if }~ y>F_l^{-1}(\tau )-a_l\underline{c}_l.\\ \end{array}\right. \end{aligned}$$

There are three cases for the choices of \(\{\underline{c}_l,{\overline{c}}_l\}\): (i) \(\underline{c}_l\ge 0, {\overline{c}}_l\ge 0\); (ii) \(\underline{c}_l< 0, {\overline{c}}_l\ge 0\); (iii) \(\underline{c}_l\le 0, {\overline{c}}_l\le 0\). Here, we give the proof of the conclusion when \(\underline{c}_l\ge 0, {\overline{c}}_l\ge 0\), and others can be proved similarly.

$$\begin{aligned} \Vert E_{l3,4}^{(2)}\Vert =&\,\Big \Vert E\Big \{\mu _l^{\mathrm T}(Y_{l})\Big [\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-Y_l}{a_l}\Big )-I(Y_l\le F_l^{-1}(\tau ))\Big ]\Big \}\Big \Vert \\ =&\,\Big \Vert \Big [\int _{-\infty }^{F_l^{-1}(\tau )-a_l{\overline{c}}_l}+\int _{F_l^{-1}(\tau ) -a_l{\overline{c}}_l}^{F_l^{-1}(\tau )-a_l\underline{c}_l}+\int _{F_l^{-1}(\tau ) -a_l\underline{c}_l}^{F_l^{-1}(\tau )}+\int _{F_l^{-1}(\tau )}^{\infty }\Big ]\\&\times \mu _l^{\mathrm T}(y)\Big [\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-y}{a_l}\Big )-I(y\le F_l^{-1}(\tau ))\Big ]f_l(y)dy\Big \Vert \\ =&\,\Big \Vert \int _{F_l^{-1}(\tau )-a_l{\overline{c}}_l}^{F_l^{-1}(\tau )}\mu _l^{\mathrm T}(y) \Big [\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-y}{a_l}\Big )-I(y\le F_l^{-1}(\tau ))\Big ]f_l(y)dy\Big \Vert =O(a_l). \end{aligned}$$

Similarly to the proof as for \(E_{l3,4}^{(2)}\), we have

$$\begin{aligned} \Vert E_{l3,4}^{(1)}\Vert \le&\, C E\Big |\Lambda _{l}\Big (\frac{F_l^{-1}(\tau )-Z_l}{a_l}\Big )-I(Z_l\le F_l^{-1}(\tau ))\Big |\\ \le&\, C \Big [\int _{-\infty }^{F_l^{-1}(\tau )-a_l{\overline{c}}_l}+\int _{F_l^{-1}(\tau ) -a_l{\overline{c}}_l}^{F_l^{-1}(\tau )-a_l\underline{c}_l}+\int _{F_l^{-1}(\tau ) -a_l\underline{c}_l}^{F_l^{-1}(\tau )}+\int _{F_l^{-1}(\tau )}^{\infty }\Big ] \\&\times \Big |\Lambda _l\Big (\frac{F_l^{-1}(\tau )-z}{a_l}\Big )-I(z\le F_l^{-1}(\tau ))\Big |h_l(z)dz\\ =&\,C \int _{F_l^{-1}(\tau )-a_l{\overline{c}}_l}^{F_l^{-1}(\tau )} \Big |\Lambda _l\Big (\frac{F_l^{-1}(\tau )-z}{a_l}\Big )-I(z\le F_l^{-1}(\tau ))\Big |h_l(z)dz=O(a_l), \end{aligned}$$

where \(h_l(z)=f_l(z)(1-G_l(z))+(1-F_l(z))g_l(z)\) is the density of the observable variable \(Z_l\). Hence, \(E_{l3,4}=E_{l3,4}^{(1)}-E_{l3,4}^{(2)}=O(a_l)\) and \(E_{l3,3}=\alpha _l^{\mathrm T}+O(a_l)\). Then, one can obtain (8.1) easily.

Based on (8.1), by the central limit theorem of U-statistics, it follows \(E_{l2}\xrightarrow {d} N(0,\Omega _{l2})\). In addition, with the aid of central limit theorem, we have \(E_{l1}\xrightarrow {d} N(0,\Omega _{l1})\), \(E_{l3}\xrightarrow {d} N(0,\Omega _{l3})\). Under the MAR assumption, it can be checked that \(\textrm{Cov}(E_{l1},E_{l2}) \rightarrow \Omega _{l12}\), \(\textrm{Cov}(E_{l1},E_{l3}) \rightarrow \Omega _{l13}\), \(\textrm{Cov}(E_{l2},E_{l3}) \rightarrow \Omega _{l23}.\) Hence, the conclusion holds. \(\square \)

Proof of Lemma 6.3

We only prove (a) for \(l=2\). In fact,

$$\begin{aligned}&\frac{1}{n_2} \sum _{j=1}^{n_2} {\widehat{W}}^2_{2j}(\theta ,\Delta )\\&\quad =\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{\xi _{2j}\delta _{2j}+(1-\xi _{2j})m_2^2(Z_{2j},\textbf{X}_{2j};\varvec{\rho }_{02})}{[1-G_2(Z_{2j})]^2}\Big [\Lambda _2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )-\tau \Big ]^2\\&\qquad +\frac{1}{n_2}\sum _{j=1}^{n_2}\frac{[\xi _{2j}\delta _{2j}+(1-\xi _{2j})m_2^2(Z_{2j},\textbf{X}_{2j};\varvec{\rho }_{02})][(1-G_2(Z_{2j}))^2-(1-{\widehat{G}}_2(Z_{2j}))^2]}{[1-{\widehat{G}}_2(Z_{2j})]^2[1-G_2(Z_{2j})]^2}\\&\qquad \times \Big [\Lambda _2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )-\tau \Big ]^2\\&\qquad +\frac{1}{n_2}\sum _{j=1}^{n_2}\frac{(1-\xi _{2j})[m_2^2(Z_{2j},\textbf{X}_{2j};\widehat{\varvec{\rho }}_{02})-m_2^2(Z_{2j},\textbf{X}_{2j};\varvec{\rho }_{02})]}{[1-{\widehat{G}}_2(Z_{2j})]^2}\Big [\Lambda _2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )-\tau \Big ]^2\\&\;\; := R_1+R_2+R_3. \end{aligned}$$

From Proposition 2.1 and Lemma 6.1, it is obvious that \(R_2\le C\max _{1\le j\le n_2} |{\widehat{G}}_2(Z_{2j})-G_2(Z_{2j})|=o_p(1)\) and

$$R_3\le C\max _{1\le j\le n_2} |{m}_2(Z_{2j},\textbf{X}_{2j};\widehat{\varvec{\rho }}_{02})-m_2(Z_{2j},\textbf{X}_{2j};{\varvec{\rho }}_{02})|=o_p(1)$$

. Now, we show \(R_1=\Omega _{21}+o_p(1)\). In fact,

$$\begin{aligned} R_1=&\,E\Big \{\frac{\xi _{2}\delta _{2}+(1-\xi _{2})m_2^2(Z_{2},\textbf{X}_{2};\varvec{\rho }_{02})}{[1-G_2(Z_{2})]^2}\Big [\Lambda _2\Big (\frac{\Delta -Z_{2}}{a_2}\Big ) -\tau \Big ]^2\Big \}+o_p(1)\\ =&\,E\Big \{\frac{\xi _{2}\delta _{2}+(1-\xi _{2})m_2^2(Z_{2},\textbf{X}_{2};\varvec{\rho }_{02})}{[1-G_2(Z_{2})]^2}\big [I(Z_2\le F_2^{-1}(\tau ))-\tau \big ]^2\Big \}\\&+E\Big \{\frac{\xi _{2}\delta _{2}+(1-\xi _{2})m_2^2(Z_{2},\textbf{X}_{2};\varvec{\rho }_{02})}{[1-G_2(Z_{2})]^2}\Big \{\Big [\Lambda _2\Big (\frac{\Delta -Z_{2}}{a_2}\Big )-\tau \Big ]^2 -\big [I(Z_2\le F_2^{-1}(\tau ))-\tau \big ]^2\Big \}\Big \}+o_p(1)\\ :=&\,\Omega _{21}+R_1^{(2)}+o_p(1). \end{aligned}$$

Next, we prove \(R_1^{(2)}=O(a_2)\), whose proof is similar to \(E_{l3,4}^{(2)}\). Note that when \(\Theta \in \{\Theta :\Vert \Theta - \Theta _0\Vert \le \varepsilon _n\}\), we have \(|\Delta -F_2^{-1}(\tau )|\le \varepsilon _n=o(a_2)\) (see condition (C5)). Then

$$\begin{aligned} R_1^{(2)} \le&\, E\Big \{\frac{\delta _2}{[1-G_2(Z_{2})]^2}\Big |\Big [\Lambda _2\Big (\frac{\Delta -Z_{2}}{a_2}\Big )-\tau \Big ]^2 -\big [I(Z_2\le F_2^{-1}(\tau ))-\tau \big ]^2\Big |\Big \}\\ =&\, E\Big \{\frac{1}{1-G_2(Y_{2})}\Big |\Big [\Lambda _2\Big (\frac{\Delta -Y_{2}}{a_2}\Big )-\tau \Big ]^2 -\big [I(Y_2\le F_2^{-1}(\tau ))-\tau \big ]^2\Big |\Big \}\\ =&\, \Big [\int _{-\infty }^{F_2^{-1}(\tau )-a_2{\overline{c}}_2}+\int _{F_2^{-1}(\tau )-a_2{\overline{c}}_2}^{F_2^{-1}(\tau ) -a_2\underline{c}_2}+\int _{F_2^{-1}(\tau )-a_2\underline{c}_2}^{F_2^{-1}(\tau )}+\int _{F_2^{-1}(\tau )}^{\infty }\Big ]\\&\times \frac{f_2(y)}{1-G_2(y)}\Big |\Big [\Lambda _2\Big (\frac{\Delta -y}{a_2}\Big )-\tau \Big ]^2 -\big [I(y\le F_2^{-1}(\tau ))-\tau \big ]^2\Big |dy\\ =&\, \int _{F_2^{-1}(\tau )-a_2{\overline{c}}_2}^{F_2^{-1}(\tau )} \frac{f_2(y)}{1-G_2(y)}\Big |\Big [\Lambda _2\Big (\frac{\Delta -y}{a_2}\Big )-\tau \Big ]^2-\big [I(y\le F_2^{-1}(\tau ))-\tau \big ]^2\Big |dy=O(a_2). \end{aligned}$$

Hence, \( \frac{1}{n_2} \sum _{j=1}^{n_2} {\widehat{W}}^2_{2j}(\theta ,\Delta ) =\Omega _{21}+o_p(1) \), and the first claim is proved.

Using \(\log n_2/(n_2a_2)\rightarrow 0\), from (C1)–(C4), one can deduce

$$\begin{aligned}&\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}'_{2j}(\theta ,\Delta ) =\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{\widehat{\delta }_{2j}}{1-{\widehat{G}}_2(Z_{2j})} \frac{1}{a_2}w_2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )\\&\quad =\frac{1}{n_2} \sum _{j=1}^{n_2} \frac{\xi _{2j}\delta _{2j}+(1-\xi _{2j})m_2(Z_{2j}, \textbf{X}_{2j};\varvec{\rho }_{02})}{1-G_2(Z_{2j})}\frac{1}{a_2}w_2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )\\&\qquad +\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{(1-\xi _{2j})[m_2(Z_{2j},\textbf{X}_{2j}; \widehat{\varvec{\rho }}_{02})-m_2(Z_{2j},\textbf{X}_{2j};\varvec{\rho }_{02})]}{1-G_2(Z_{2j})} \frac{1}{a_2}w_2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )\\&\qquad +\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{\xi _{2j}\delta _{2j}+(1-\xi _{2j})m_2(Z_{2j},\textbf{X}_{2j}; \widehat{\varvec{\rho }}_{02})}{[1-G_2(Z_{2j})][1-{\widehat{G}}_2(Z_{2j})]} [{\widehat{G}}_2(Z_{2j})-G_2(Z_{2j})]\frac{1}{a_2}w_2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )\\&\quad =\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{\xi _{2j}\delta _{2j}+(1-\xi _{2j})m_2(Z_{2j},\textbf{X}_{2j}; \varvec{\rho }_{02})}{1-G_2(Z_{2j})}\frac{1}{a_2}w_2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big ) +O_p\Big (\sqrt{\frac{\log n_2}{n_2}}\Big )\\&\quad =f_2(F_2^{-1}(\tau ))+o_p(1). \end{aligned}$$

Finally,

$$\begin{aligned}&\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}(\theta ,\Delta ) = \frac{1}{n_2}\sum _{j=1}^{n_2} \frac{\widehat{\delta }_{2j}}{1-{\widehat{G}}_2(Z_{2j})} \Big [\Lambda _2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )-\tau \Big ]\\&\quad =\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{\xi _{2j}\delta _{2j}+(1-\xi _{2j})m_2(Z_{2j},\textbf{X}_{2j}; \varvec{\rho }_{02})}{1-G_2(Z_{2j})}\Big [\Lambda _2\Big (\frac{\Delta _\tau -Z_{2j}}{a_2}\Big )-\tau \Big ]\\&\qquad + \frac{1}{n_2}\sum _{j=1}^{n_2}\frac{\xi _{2j}\delta _{2j}+(1-\xi _{2j})m_2(Z_{2j},\textbf{X}_{2j}; \varvec{\rho }_{02})}{1-G_2(Z_{2j})}\frac{1}{a_2}w_2\Big (\frac{\Delta ^*-Z_{2j}}{a_2}\Big )(\Delta -\Delta _\tau ) +O_p\Big (\sqrt{\frac{\log n_2}{n_2}}\Big ) \\&\;\; := I_1+I_2+O_p\Big (\sqrt{\frac{\log n_2}{n_2}}\Big ), \end{aligned}$$

where \(\Delta ^*\) is between \(\Delta \) and \(\Delta _\tau \). By (C2) and law of large numbers, we have \(I_2=[f_2(F_2^{-1}(\tau ))+o_p(1)](\Delta -\Delta _\tau )\). By (C1) and \(n_2a_2^{2r_2}\rightarrow 0\), it is easy to see that, for sufficiently large C,

$$\begin{aligned} P(|I_1|>Cn_2^{-1/2}) \le \frac{n_2a_2^{2r_2}+C_0}{C} \rightarrow 0, \end{aligned}$$

where \(C_0=\Omega _{21}+o(1)\), so \(I_1=O_p(n_2^{-1/2})\). Thus, the third claim is proved. \(\square \)

Proof of Lemma 6.4

We only show the conclusions hold when \(l=2\). In fact,

$$\begin{aligned}&0=\Big |\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{{\widehat{W}}_{2j}(\theta ,\Delta )}{1+\lambda _2 {\widehat{W}}_{2j}(\theta ,\Delta )}\Big |\\&\quad \ge |\lambda _2|\frac{1}{n_2}\sum _{j=1}^{n_2} \frac{{\widehat{W}}^2_{2j}(\theta ,\Delta )}{1+|\lambda _2|\max _{1\le j\le n_2}|{\widehat{W}}_{2j}(\theta ,\Delta )|}-\Big |\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}(\theta ,\Delta )\Big |. \end{aligned}$$

Note that under (C3)–(C4), combined with Proposition 2.1, we have

$$\begin{aligned} \max _{1\le j\le n_2}|{\widehat{W}}_{2j}(\theta ,\Delta )|=\max _{1\le j \le n_2}\Big |\frac{\widehat{\delta }_{2j}}{1-{\widehat{G}}_2(Z_{2j})} \Big [\Lambda _2\Big (\frac{\Delta -Z_{2j}}{a_2}\Big )-\tau \Big ]\Big |=O_p(1), \end{aligned}$$

and combined with Lemma 6.3, \(\lambda _2=O_p(\varepsilon _n)\) follows. In addition,

$$\begin{aligned} 0=\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}(\theta ,\Delta ) - \lambda _2\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^2(\theta ,\Delta ) +O_p(\varepsilon _n^2), \end{aligned}$$

which yields \(\lambda _2 = \big [\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}^2_{2j}(\theta ,\Delta )\big ]^{-1}\frac{1}{n_2} \sum _{j=1}^{n_2}{\widehat{W}}_{2j}(\theta ,\Delta )+O_p(\varepsilon _n^2)\). \(\square \)

Proof of Lemma 6.5

To prove this Lemma, it is sufficient to show that for \(\theta -\theta _0=\varepsilon _n u_1\), \(\Delta -\Delta _\tau =\varepsilon _n u_2\) and \(u_1^2+u_2^2=1\), we have \(-l_1(\theta ,\Delta ) > -l_1(\theta _0,\Delta _\tau )\) and \(l_2(\theta ,\Delta )\ge -l_2(\theta _0,\Delta _\tau )\). Here, we only show the second claim. When \(u_2=0\), \(-l_2(\theta ,\Delta )=-l_2(\theta _0,\Delta _\tau )\). When \(u_2\ne 0\), by the Taylor expansion, one can get

$$\begin{aligned} -l_2(\theta ,\Delta )=&\,\frac{n_2}{2}\Big [\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}^2(\theta ,\Delta )\Big ]^{-1}\Big [\frac{1}{n_2} \sum _{j=1}^{n_2}{\widehat{W}}_{2j}(\theta ,\Delta )\Big ]^2+O_p(n_2\varepsilon _n^3)\\ =&\, \frac{n_2}{2} \Big [\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^2(\theta ,\Delta )\Big ]^{-1} \Big [\frac{1}{n_2} \sum _{j=1}^{n_2}{\widehat{W}}_{2j}(\theta _0,\Delta _\tau )+\frac{1}{n_2} \sum _{j=1}^{n_2}{\widehat{W}}'_{2j}(\theta _0,\Delta _\tau ^*) (\Delta -\Delta _\tau )\Big ]^2\\&\quad +O_p(n_2\varepsilon _n^3)\\ =&\, \frac{n_2}{2} \Big [\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}^2_{2j}(\theta _0,\Delta _\tau )\Big ]^{-1} \Big [\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}(\theta _0,\Delta _\tau )\Big ]^2+Cn_2\varepsilon _n^2\\ >&\, \frac{n_2}{2} \Big [\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}^2(\theta _0,\Delta _\tau )\Big ]^{-1} \Big [\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}(\theta _0,\Delta _\tau )\Big ]^2 +O_p(n_2\varepsilon _n^3) =-l_2(\theta _0,\Delta _\tau ), \end{aligned}$$

where \(\Delta _\tau ^*\) is between \(\Delta \) and \(\Delta _\tau \). By similar arguments, one can obtain \(-l_1(\theta ,\Delta ) > -l_1(\theta _0,\Delta _\tau )\). Moreover, \(l_n(\theta ,\Delta )\) is continuous. Hence, \(Q_{in}(\widehat{\theta }_0,\widehat{\Delta }_\tau )=0\) for \(i=1,\ldots ,4\). \(\square \)

Proof of Lemma 6.6

To prove the first part of this Lemma, it suffices to show \(-l_1(\theta _0,\Delta _\tau \pm \varepsilon _n) > -l_1(\theta _0,\Delta _\tau )\) and \(-l_2(\theta _0,\Delta _\tau \pm \varepsilon _n) > -l_2(\theta _0,\Delta _\tau )\), which can be proved similarly to Lemma 6.5.

Now we prove the second part of conclusion. For \(Q_{in}(\theta _0,{\widetilde{\Delta }}_\tau )=0\) (\(i=1,2\)) and \(Q_{3n}(\theta _0,{\widetilde{\Delta }}_\tau )+\frac{n_2}{n_1} Q_{4n}(\theta _0,{\widetilde{\Delta }}_\tau )=0\), by Taylor expansion, combined with Lemma 6.3, we have

$$\begin{aligned} \left( \begin{array}{c} 0\\ 0\\ 0 \end{array}\right) = \left( \begin{array}{c} \frac{1}{n_1}\sum _{i=1}^{n_1}{\widehat{W}}_{1i}(\theta _0,\Delta _\tau )\\ \frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}(\theta _0,\Delta _\tau )\\ 0 \end{array}\right) + S \left( \begin{array}{c} {\widetilde{\Delta }}_\tau - \Delta _\tau \\ {\widetilde{\lambda }}_1\\ {\widetilde{\lambda }}_2 \end{array}\right) + o_p(T_n), \end{aligned}$$

where \(T_n=|{\widetilde{\Delta }}_\tau -\Delta _\tau |+|{\widetilde{\lambda }}_1|+|{\widetilde{\lambda }}_2|\) and \(S=\left( \begin{array}{ccc} f_1(F_1^{-1}(\tau )) &{} -\Omega _{11} &{} 0\\ f_2(F_2^{-1}(\tau )) &{} 0 &{} -\Omega _{21}\\ 0 &{} f_1(F_1^{-1}(\tau )) &{} \gamma f_2(F_2^{-1}(\tau )) \end{array}\right) \). From Lemma 6.2, it follows that \(T_n=O_p(n^{-1/2})\) and

$$\begin{aligned} {\widetilde{\lambda }}_1&= \frac{\gamma f_2^2(F_2^{-1}(\tau ))n_1^{-1} \sum _{i=1}^{n_1} {\widehat{W}}_{1i}(\theta _0,\Delta _\tau ) -\gamma f_1(F_1^{-1}(\tau )) f_2(F_2^{-1}(\tau ))n_2^{-1}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}(\theta _0,\Delta _\tau )}{\det } \\&\quad +o_p(n^{-1/2}),\\ {\widetilde{\lambda }}_2&= \frac{-f_1(F_1^{-1}(\tau )) f_2(F_2^{-1}(\tau ))n_1^{-1}\sum _{i=1}^{n_1} {\widehat{W}}_{1i}(\theta _0,\Delta _\tau )+f_1^2(F_1^{-1}(\tau )) n_2^{-1}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}(\theta _0,\Delta _\tau )}{\det } \\&\quad +o_p(n^{-1/2}). \end{aligned}$$

Therefore, \({\widetilde{\lambda }}_1 = -\gamma \frac{f_2(F_2^{-1}(\tau ))}{f_1(F_1^{-1}(\tau ))}{\widetilde{\lambda }}_2 + o_p(n^{-1/2})\). Applying Lemma 6.2, the second conclusion can be verified. \(\square \)

Proof of Lemma 6.7

The proof is similar to the proof of Lemma 6.4, and we only prove the conclusions when \(l=2\). Let \(\lambda _2^A=\Vert \lambda _2^A\Vert \eta _2\), then

$$\begin{aligned} 0&=\eta _2^{\mathrm T} \frac{1}{n_2}\sum _{j=1}^{n_2}\frac{{\widehat{W}}_{2j}^A(\theta ,\Delta )}{1+\lambda _2^{A\mathrm T}{\widehat{W}}_{2j}^A(\theta ,\Delta )}\\&\ge \Vert \lambda _2^A\Vert \frac{\eta _2^{\mathrm T}\frac{1}{n_2}\sum _{j=1}^{n_2} {\widehat{W}}_{2j}^A(\theta ,\Delta ){\widehat{W}}_{2j}^{A\mathrm T}(\theta ,\Delta )\eta _2}{1+\Vert \lambda _2^A\Vert \max _{j}|\eta _2^{\mathrm T}{\widehat{W}}_{2j}^A(\theta ,\Delta )|}-\big |\eta _2^{\mathrm T} \frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^A(\theta ,\Delta )\big |. \end{aligned}$$

Under (A1), one can check that \(\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^A(\theta ,\Delta ){\widehat{W}}_{2j}^{A^\mathrm T}(\theta ,\Delta )= \left( \begin{array}{cc} \Omega _{21} &{} \sigma _{\beta _2}^{\mathrm T}\\ \sigma _{\beta _2} &{} \sigma _{\beta _2\beta _2} \end{array}\right) +o_p(1)\). Combined with (C3)–(C4), (A2) and Lemma 6.5, we have \(\Vert \lambda _2^A\Vert =O_p(\varepsilon _n)\). Furthermore

$$\begin{aligned} \textbf{0}&=\frac{1}{n_2}\sum _{j=1}^{n_2}\frac{{\widehat{W}}_{2j}^A(\theta ,\Delta )}{1+\lambda _2^{A\mathrm T}{\widehat{W}}_{2j}^A(\theta ,\Delta )}\\&=\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^A(\theta ,\Delta )-\frac{1}{n_2} \sum _{j=1}^{n_2}{\widehat{W}}_{2j}^A(\theta ,\Delta ) {\widehat{W}}_{2j}^{A\mathrm T}(\theta ,\Delta )\lambda _2^A+O_p(\varepsilon _n^2), \end{aligned}$$

therefore, \(\lambda _2^A=\big [\frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^A(\theta ,\Delta ) {\widehat{W}}_{2j}^{A\mathrm T}(\theta ,\Delta )\big ]^{-1} \frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^A(\theta ,\Delta )+O_p(\varepsilon _n^2)\). Similarly, one can verify the conclusions for \(l=1\). \(\square \)

Proof of Lemma 6.7

The proof is similar to Lemma 6.5. To prove this Lemma, it is sufficient to show that for \(\theta -\theta _0=\varepsilon _n u_1\), \(\Delta -\Delta _\tau =\varepsilon _n u_2\) and \(u_1^2+u_2^2=1\), we have

$$\begin{aligned} -{{\overline{l}}}_1^A(\theta ,\Delta ) > -{{\overline{l}}}_1^A(\theta _0,\Delta _\tau )~~\text{ and }~~-{{\overline{l}}}_2^A(\theta ,\Delta )\ge -{{\overline{l}}}_2^A(\theta _0,\Delta _\tau ), \end{aligned}$$

where \({{\overline{l}}}_1^A(\theta ,\Delta )=-\sum _{i=1}^{n_1}\log (1+\lambda _1^{A\mathrm T}{\widehat{W}}_{1i}^A(\theta ,\Delta ))\), \({{\overline{l}}}_2^A(\theta ,\Delta )=-\sum _{j=1}^{n_2}\log (1+\lambda _2^{A\mathrm T}{\widehat{W}}_{2j}^A(\theta ,\Delta ))\).

When \(u_2=0\), \(-{{\overline{l}}}_2^A(\theta ,\Delta )=-{{\overline{l}}}_2^A(\theta _0,\Delta _\tau )\). When \(u_2\ne 0\), by Taylor expansion, similar to Lemma 6.5, we have \( -{{\overline{l}}}_2^A(\theta ,\Delta )=Cn\varepsilon _n^2>-{{\overline{l}}}_2^A(\theta _0,\Delta _\tau )=o_p(n\varepsilon _n^2). \) Similarly, one can obtain that \(-{{\overline{l}}}_1^A(\theta ,\Delta )>-{{\overline{l}}}_1^A(\theta _0,\Delta _\tau )\). Therefore, the conclusion holds. \(\square \)

Proof of Lemma 6.9

The proof of the first part is similar to that of Lemmas 6.6 and 6.8. Now we prove the second conclusion. Applying Taylor expansion to \(Q_{in}^A(\theta _0,{\widetilde{\Delta }}_\tau ^A)=\textbf{0}\) for \(i=1,2\), and \(Q_{3n}^A(\theta _0,{\widetilde{\Delta }}_\tau ^A)+\frac{n_2}{n_1}Q_{4n}^A(\theta _0,{\widetilde{\Delta }}_\tau ^A)=0\), one can obtain

$$\begin{aligned} \left( \begin{array}{c} \textbf{0}\\ \textbf{0}\\ 0 \end{array}\right) =\left( \begin{array}{c} \frac{1}{n_1}\sum _{i=1}^{n_1}{\widehat{W}}_{1i}^A(\theta _0,\Delta _\tau )\\ \frac{1}{n_2}\sum _{j=1}^{n_2}{\widehat{W}}_{2j}^A(\theta _0,\Delta _\tau )\\ 0 \end{array}\right) +S^A\left( \begin{array}{c} {\widetilde{\Delta }}_\tau ^A-\Delta _\tau \\ {\widetilde{\lambda }}_1^A\\ {\widetilde{\lambda }}_2^A \end{array}\right) +o_p(T_n^A), \end{aligned}$$

where \(T_n^A=|{\widetilde{\Delta }}_{\tau }^A-\Delta _\tau |+\Vert {\widetilde{\lambda }}_1^A\Vert +\Vert {\widetilde{\lambda }}_2^A\Vert \) and

$$\begin{aligned} S^A=\left( \begin{array}{ccccc} f_1(F_1^{-1}(\tau )) &{} -\Omega _{11} &{} -\sigma _{\beta _1}^{\mathrm T} &{} 0 &{} \textbf{0}\\ \textbf{0} &{} -\sigma _{\beta _1} &{} -\sigma _{\beta _1\beta _1} &{} \textbf{0} &{} \textbf{0}\\ f_2(F_2^{-1}(\tau )) &{} 0 &{} \textbf{0} &{}-\Omega _{21} &{} -\sigma _{\beta _2}^{\mathrm T}\\ \textbf{0} &{} \textbf{0} &{} \textbf{0} &{} -\sigma _{\beta _2} &{} -\sigma _{\beta _2\beta _2}\\ 0 &{} f_1(F_1^{-1}(\tau )) &{} \textbf{0} &{} \gamma f_2(F_2^{-1}(\tau )) &{}\textbf{0} \end{array} \right) . \end{aligned}$$

From Lemma 6.2, we have \(T_n^A=O_p(n^{-1/2})\). Based on knowledge of block matrices, we have

$$\begin{aligned} {\widetilde{\Delta }}_\tau ^A - \Delta _\tau =&-\frac{1}{\det ^A} \Big \{\frac{f_1(F_1^{-1}(\tau ))}{\Omega _{11}^{A}} \frac{1}{n_1} \sum _{i=1}^{n_1}\big [{\widehat{W}}_{1i}(\theta _0,\Delta _\tau )-\sigma _{\beta _1}^{\mathrm T}\sigma _{\beta _1\beta _1}^{-1}{\overline{W}}_{1i}^A\big ]\\&+\frac{\gamma f_2(F_2^{-1}(\tau ))}{\Omega _{21}^{A}} \frac{1}{n_2} \sum _{j=1}^{n_2}\big [{\widehat{W}}_{2j}(\theta _0,\Delta _\tau )-\sigma _{\beta _2}^{\mathrm T} \sigma _{\beta _2\beta _2}^{-1}{\overline{W}}_{2j}^A\big ]\Big \}+o_p(n^{-1/2}), \end{aligned}$$

where \(\det ^A=\frac{f_1^2(F_1^{-1}(\tau ))}{\Omega _{11}^{A}}+\frac{\gamma f_2^2(F_2^{-1}(\tau ))}{\Omega _{21}^{A}}\). \(\square \)

Proof of Lemma 6.10

The proof is similar to the proof of Lemma 6.2. In fact,

$$\begin{aligned}&\frac{1}{\sqrt{n_l}} \sum _{i=1}^{n_l} \big [{\widehat{W}}_{li}(\theta _0,\Delta _{\tau })-\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}{\overline{W}}_{li}^A\big ]\\&\quad =\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l} \frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})}{1-{G}_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{li})\Big ]\\&\qquad + \frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l} \frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})}{1-{G}_l(Z_{li})}\frac{{\widehat{G}}_l(Z_{li})-G_l(Z_{li})}{1-G_l(Z_{li})}\\&\qquad \times \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{li})\Big ]\\&\qquad +\frac{1}{\sqrt{n_l}} \sum _{i=1}^{n_l} \frac{(1-\xi _{li})[m_l(Z_{li},\textbf{X}_{li};\widehat{\varvec{\rho }}_{0l})-m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})]}{1-G_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{li})\Big ]\\&\qquad +\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{[\xi _{li}\delta _{li}+(1-\xi _{li})m_l({Z_{li}},\textbf{X}_{li};\varvec{\rho }_{0l})][{\widehat{G}}_l(Z_{li})-G_l(Z_{li})]^2}{[1-G_l(Z_{li})]^2[1-{\widehat{G}}_l(Z_{li})]}\\&\qquad \times \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{li})\Big ]\\&\qquad +\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l}\frac{(1-\xi _{li})[m_l(Z_{li},\textbf{X}_{li};\widehat{\varvec{\rho }}_{0l})-m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})][{\widehat{G}}_l(Z_{li})-G_l(Z_{li})]}{[1-G_l(Z_{li})][1-{\widehat{G}}_l(Z_{li})]}\\&\qquad \times \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{li})\Big ] :=D_1^A+D_2^A+D_3^A+D_4^A+D_5^A. \end{aligned}$$

It is easy to see that \(D_4^A=O_p(\log n_l/\sqrt{n_l})=o_p(1)\) and \(D_5^A=O_p(\sqrt{\log n_l/n_l})=o_p(1)\). By Proposition 2.1 and Lemma 6.1, we have

$$\begin{aligned} D_2^A=&\frac{1}{n_l^{3/2}}\sum _{j<k}\Big \{\frac{\xi _{lj}\delta _{lj}+(1-\xi _{lj})m_l(Z_{lj},\textbf{X}_{lj};\varvec{\rho }_{0l})}{1-G_l(Z_{lj})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{lj}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{lj})\Big ]\\&\times \Gamma _l(Z_{lk},\textbf{X}_{lk},\xi _{lk},\xi _{lk}\delta _{lk};Z_{lj})+\frac{\xi _{lk}\delta _{lk}+(1-\xi _{lk})m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})}{1-G_l(Z_{lk})}\\&\times \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{lk}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{lk})\Big ]\Gamma _l(Z_{lj},\textbf{X}_{lj},\xi _{lj},\xi _{lj}\delta _{lj};Z_{lk})\Big \}\\&-E\Big [\frac{\delta _l}{1-G_l(Z_l)}[I(Z_l\le F_l^{-1}(\tau ))-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_l)]\mu _l^{\mathrm T}(Z_l)\Big ]I_l^{-1}(\varvec{\rho }_{0l})\\&\times \frac{1}{\sqrt{n_l}}\sum _{k=1}^{n_l} \frac{\xi _{lk}[\delta _{lk}-m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})]\nabla m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})}{m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})[1-m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})]}+o_p(1), \end{aligned}$$

and

$$\begin{aligned} D_3^A=&E\Big [\frac{(1-\xi _l)[I(Z_l\le F_l^{-1}(\tau )) -\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_l)]\nabla m_l^{\mathrm T}(Z_{l},\textbf{X}_{l}; \varvec{\rho }_{0l})}{1-G_l(Z_l)}\Big ]I_l^{-1}(\varvec{\rho }_{0l})\\&\times \frac{1}{\sqrt{n_l}}\sum _{k=1}^{n_l} \frac{\xi _{lk}[\delta _{lk}-m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})]\nabla m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})}{m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})[1-m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})]}+o_p(1). \end{aligned}$$

Therefore

$$\begin{aligned}&\frac{1}{\sqrt{n_l}} \sum _{i=1}^{n_l} \big [{\widehat{W}}_{li}(\theta _0,\Delta _{\tau }) -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}{\overline{W}}_{li}^A\big ]\\&\quad\quad =\frac{1}{\sqrt{n_l}}\sum _{i=1}^{n_l} \frac{\xi _{li}\delta _{li}+(1-\xi _{li})m_l(Z_{li},\textbf{X}_{li};\varvec{\rho }_{0l})}{1-{G}_l(Z_{li})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{li}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{li})\Big ]\\&\qquad +\frac{1}{n_l^{3/2}}\sum _{j<k}\Big \{\frac{\xi _{lj}\delta _{lj}+(1-\xi _{lj})m_l(Z_{lj},\textbf{X}_{lj};\varvec{\rho }_{0l})}{1-G_l(Z_{lj})}\Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{lj}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{lj})\Big ]\\&\qquad \times \Gamma _l(Z_{lk},\textbf{X}_{lk},\xi _{lk},\xi _{lk}\delta _{lk};Z_{lj})+\frac{\xi _{lk}\delta _{lk}+(1-\xi _{lk})m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})}{1-G_l(Z_{lk})}\\&\qquad \times \Big [\Lambda _l\Big (\frac{F_l^{-1}(\tau )-Z_{lk}}{a_l}\Big )-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_{lk})\Big ]\Gamma _l(Z_{lj},\textbf{X}_{lj},\xi _{lj},\xi _{lj}\delta _{lj};Z_{lk})\Big \}\\&\qquad +E\Big \{\frac{(1-\xi _l)[I(Z_l\le F_l^{-1}(\tau ))-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_l)]\nabla m_l^{\mathrm T}(Z_{l},\textbf{X}_{l};\varvec{\rho }_{0l})}{1-G_l(Z_l)}\\&\qquad -\frac{\delta _l}{1-G_l(Z_l)}[I(Z_l\le F_l^{-1}(\tau ))-\tau -\sigma _{\beta _l}^{\mathrm T}\sigma _{\beta _l\beta _l}^{-1}\beta _l(Z_l)]\mu _l^{\mathrm T}(Z_l) \Big \}I_l^{-1}(\varvec{\rho }_{0l})\\&\qquad \times \frac{1}{\sqrt{n_l}}\sum _{k=1}^{n_l} \frac{\xi _{lk}[\delta _{lk}-m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})]\nabla m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})}{m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})[1-m_l(Z_{lk},\textbf{X}_{lk};\varvec{\rho }_{0l})]}+o_p(1)\\&\;\; :=E_{l1}^A+E_{l2}^A+E_{l3}^A+o_p(1). \end{aligned}$$

By the central limit theorem of U-statistics, it follows \(E_{l2}^A\xrightarrow {d} N(0,\Omega _{l2}^A)\). In addition, with the aid of central limit theorem, we have \(E_{l1}^A\xrightarrow {d} N(0,\Omega _{l1}^A)\), \(E_{l3}^A\xrightarrow {d} N(0,\Omega _{l3}^A)\). Under the MAR assumption, it can be checked that \(\textrm{Cov}(E_{l1}^A,E_{l2}^A) \rightarrow \Omega _{l12}^A\), \(\textrm{Cov}(E_{l1}^A,E_{l3}^A) \rightarrow \Omega _{l13}^A\), \(\textrm{Cov}(E_{l2}^A,E_{l3}^A) \rightarrow \Omega _{l23}^A.\) Hence, the conclusion holds. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, CJ., Liang, HY. Quantile difference estimation with censoring indicators missing at random. Lifetime Data Anal 30, 345–382 (2024). https://doi.org/10.1007/s10985-023-09614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-023-09614-7

Keywords

Mathematics Subject Classification

Navigation