Skip to main content
Log in

Development of edge effects around experimental ecosystem hotspots is affected by hotspot density and matrix type

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Ecological edge effects are sensitive to landscape context, including matrix type and the presence of other nearby edges. In sub-Saharan Africa, temporary cattle corrals (bomas) develop into productive nutrient hotspots (glades) that attract diverse wildlife and persist for decades.

Objectives

Building on previous descriptive work, we experimentally altered boma configurations in an African savanna and asked how boma density and matrix type (open plains vs. bushland) influence the development of edge effects around abandoned bomas.

Methods

We randomly assigned eleven plots to three treatments: one boma, two bomas 200 m apart, or two bomas 100 m apart. Before boma establishment and ≥18 months after boma abandonment, we sampled soil nutrients, foliar nutrients, plant communities, and large herbivore use at each plot.

Results

Bomas developed into glade hotspots with elevated nutrient concentrations, altered vegetation, and elevated use by large herbivores. Few edge effects were detectable at distances ≥50 m. Both glade density and matrix type affected the development of edge effects around experimental glades. When compared to patterns around single glades, the presence of a second glade 100 m away strengthened glade edge effects (more difference between glade and matrix), but the presence of a second glade 200 m away weakened edge effects. Vegetation edge effects were stronger in bushland areas than open plains, while wildlife shifts were strongest along the bushland-plain interface.

Conclusions

Our results highlight the potential for edge effect variability in complex landscapes, and show that manipulative experiments can help illuminate causes and consequences of that variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnew A, Agnew S (1994) Upland Kenya Wild Flowers. East African Natural History Society, Nairobi, Kenya

  • Agnew ADQ (2006) A field key to upland Kenya grasses. J East Afr Nat Hist 95(1):1–83

    Google Scholar 

  • Augustine DJ (2003) Long-term, livestock-mediated redistribution of nitrogen and phosphorus in an East African savanna. J Appl Ecol 40(1):137–149

    Article  Google Scholar 

  • Augustine DJ (2004) Influence of cattle management on habitat selection by impala on central Kenyan rangeland. J Wildl Manag 68(4):916–923

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ, Frank DA (2003) Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecol Appl 13(5):1325–1337

    Article  Google Scholar 

  • Barnes RFW (2001) How reliable are dung counts for estimating elephant numbers? Afr J Ecol 39(1):1–9

    Article  Google Scholar 

  • Blackmore AC, Mentis MT, Scholes RJ (1990) The origin and extent of nutrient-enriched patches within a nutrient-poor savanna in South-Africa. J Biogeogr 17(4–5):463–470

    Article  Google Scholar 

  • Bloom SA (1981) Similarity indexes in community studies: potential pitfalls. Mar Ecol Prog Ser 5(2):125–128

    Article  Google Scholar 

  • Cadenasso ML, Pickett STA, Weathers KC, Jones CG (2003) A framework for a theory of ecological boundaries. Bioscience 53(8):750–758

    Article  Google Scholar 

  • Cadenasso ML, Traynor MM, Pickett STA (1997) Functional location of forest edges: gradients of multiple physical factors. Can J For Res 27(5):774–782

    Article  Google Scholar 

  • Campbell RE, Harding JS, Ewers RM, Thorpe S, Didham RK (2011) Production land use alters edge response functions in remnant forest invertebrate communities. Ecol Appl 21(8):3147–3161

    Article  Google Scholar 

  • Collinge SK, Palmer TM (2002) The influences of patch shape and boundary contrast on insect response to fragmentation in California grasslands. Landscape Ecol 17(7):647–656

    Article  Google Scholar 

  • Damschen EI, Brudvig LA, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ (2008) The movement ecology and dynamics of plant communities in fragmented landscapes. Proc Natl Acad Sci U S A 105(49):19078–19083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels M (2006) Estimating red deer Cervus elaphus populations: an analysis of variation and cost-effectiveness of counting methods. Mammal Rev 36:235–247

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Donihue CM, Porensky LM, Foufopoulos J, Riginos C, Pringle RM (2013) Glade cascades: indirect legacy effects of pastoralism enhance the abundance and spatial structuring of arboreal fauna. Ecology 94(4):827–837

    Article  Google Scholar 

  • Ewers RM, Didham RK (2008) Pervasive impact of large-scale edge effects on a beetle community. Proc Natl Acad Sci U S A 105(14):5426–5429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, Kapos V, Reynolds G, Sinun W, Snaddon JL, Turner EC (2011) A large-scale forest fragmentation experiment: the stability of altered forest ecosystems project. Philos Trans R Soc B 366(1582):3292–3302

    Article  Google Scholar 

  • Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153(2):165–182

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  PubMed  Google Scholar 

  • Fletcher RJ (2005) Multiple edge effects and their implications in fragmented landscapes. J Anim Ecol 74(2):342–352

    Article  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19(3):768–782

    Article  Google Scholar 

  • Harper KA, Mascarua-Lopez L, Macdonald SE, Drapeau P (2007) Interaction of edge influence from multiple edges: examples from narrow corridors. Plant Ecol 192(1):71–84

    Article  Google Scholar 

  • Laurance WF (2000) Do edge effects occur over large spatial scales? Trends Ecol Evol 15(4):134–135

    Article  PubMed  Google Scholar 

  • Laurance WF, Camargo JLC, Luizao RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Williamson GB, Benitez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144(1):56–67

    Article  Google Scholar 

  • Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24(12):659–669

    Article  PubMed  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, Ribeiro JEL, Capretz RL (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87(2):469–482

    Article  PubMed  Google Scholar 

  • Malcolm JR (1994) Edge effects in central Amazonian forest fragments. Ecology 75(8):2438–2445

    Article  Google Scholar 

  • Merkle JA, Fortin D, Morales JM (2014) A memory-based foraging tactic reveals an adaptive mechanism for restricted space use. Ecol Lett 17:924–993

    Article  CAS  PubMed  Google Scholar 

  • Muchiru AN, Western D, Reid RS (2009) The impact of abandoned pastoral settlements on plant and nutrient succession in an African savanna ecosystem. J Arid Environ 73:322–331

    Article  Google Scholar 

  • Okello BD, O’Connor TG, Young TP (2001) Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. For Ecol Manag 142(1–3):143–153

    Article  Google Scholar 

  • Orrock JL, Curler GR, Danielson BJ, Coyle DR (2011) Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities. Landscape Ecol 26(10):1361–1372

    Article  Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18(1):238–248

    Article  Google Scholar 

  • Peterman RM (1990) Statistical power analysis can improve fisheries research and management. Can J Fish Aquat Sci 47:2–15

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3

  • Porensky LM (2011) When edges meet: interacting edge effects in an African savanna. J Ecol 99(4):923–934

    Article  Google Scholar 

  • Porensky LM, Veblen KE (2012) Grasses and browsers reinforce landscape heterogeneity by excluding trees from ecosystem hotspots. Oecologia 168(3):749–759

    Article  PubMed  Google Scholar 

  • Porensky LM, Veblen KE (2015) Generation of ecosystem hotspots using short-term cattle corrals in an African savanna. Rangel Ecol Manag 68(2):131–141

    Article  Google Scholar 

  • Porensky LM, Young TP (2013) Edge-effect interactions in fragmented and patchy landscapes. Conserv Biol 27(3):509–519

    Article  PubMed  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9(5):603–614

    Article  PubMed  Google Scholar 

  • Rasmussen HB, Kahindi O, Vollrath F, Douglas-Hamilton I (2005) Estimating elephant densities from wells and droppings in dried out riverbeds. Afr J Ecol 43:312–319

    Article  Google Scholar 

  • Reid RS, Ellis JE (1995) Impacts of pastoralists on woodlands in south Turkana, Kenya—livestock-mediated tree recruitment. Ecol Appl 5(4):978–992

    Article  Google Scholar 

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Riginos C (2015) Climate and the landscape of fear in an African savanna. J Anim Ecol 84:124–133

    Article  PubMed  Google Scholar 

  • Riginos C, Grace JB (2008) Savanna tree density, herbivores, and the herbaceous community: bottom-up versus top-down effects. Ecology 89:2228–2238

    Article  PubMed  Google Scholar 

  • Santos-Barrera G, Urbina-Cardona JN (2011) The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes. Rev Mex Biodivers 82(2):679–687

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 and 623–656

  • Sisk TD, Haddad NM, Ehrlich PR (1997) Bird assemblages in patchy woodlands: modeling the effects of edge and matrix habitats. Ecol Appl 7(4):1170–1180

    Article  Google Scholar 

  • Söderström B, Reid RS (2010) Abandoned pastoral settlements provide concentrations of resources for savanna birds. Acta Oecol 36(2):184–190

    Article  Google Scholar 

  • Stelfox JB (1986) Effects of livestock enclosures bomas on the vegetation of the Athi Plains, Kenya. Afr J Ecol 24:41–45

    Article  Google Scholar 

  • Treydte AC, Halsdorf SA, Weber E, Edwards PJ (2006) Habitat use of warthogs on a former cattle ranch in Tanzania. J Wildl Manag 70(5):1285–1292

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87(3):661–685

  • van der Waal C, Kool A, Meijer S, Kohi E, Heitkönig I, de Boer W, van Langevelde F, Grant R, Peel M, Slotow R, de Knegt H, Prins H, de Kroon H (2011) Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165(4):1095–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Veblen KE (2012) Savanna glade hotspots: plant community development and synergy with large herbivores. J Arid Environ 78:119–127

    Article  Google Scholar 

  • Veblen KE (2013) Impacts of traditional livestock corrals on woody plant communities in an East African savanna. Rangel J 35(3):349–353

    Article  Google Scholar 

  • Veblen KE, Young TP (2010) Contrasting effects of cattle and wildlife on the vegetation development of a savanna landscape mosaic. J Ecol 98:993–1001

    Article  Google Scholar 

  • Vuorio V, Muchiru A, Reid RS, Ogutu JO (2014) How pastoralism changes savanna vegetation: impact of old pastoral settlements on plant diversity and abundance in south-western Kenya. Biodivers Conserv 23:3219–3240

    Article  Google Scholar 

  • Wahungu GM, Mureu LK, Kimuyu DM, Birkett A, Macharia PG, Burton J (2011) Survival, recruitment and dynamics of Acacia drepanolobium Sjostedt seedlings at Olpejeta Conservancy, Kenya, between 1999 and 2009. Afr J Ecol 49(2):227–233

    Article  Google Scholar 

  • Western D, Dunne T (1979) Environmental aspects of settlement site decisions among pastoral Maasai. Hum Ecol 7(1):75–98

    Article  Google Scholar 

  • Wilkerson ML (2013) Invasive plants in conservation linkages: from conceptual model to understanding real-world patterns. PhD Dissertation, University of California, Davis

  • Wolf M, Frair J, Merrill E, Turchin P (2009) The attraction of the known: the importance of spatial familiarity in habitat selection in wapiti Cervus elaphus. Ecography 32:401–410

    Article  Google Scholar 

  • Young HS, Dirzo R, Helgen KM, McCauley DJ, Billeter SA, Kosoy MY, Osikowicz LM, Salkeld DJ, Young TP, Dittmar K (2014) Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proc Natl Acad Sci 111(19):7036–7041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young HS, McCauley DJ, Dirzo R, Goheen JR, Agwanda B, Castillo EO, Ferguson A, Kinyua SN, McDonough M, Palmer TM, Pringle RM, Young TP, Helgen KM (2015) Context-dependent effects of large mammal declines on small mammal communities in central Kenya. Ecol Appl 25(2):348–360

  • Young TP, Palmer TA, Gadd ME (2005) Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biol Conserv 122(2):351–359

    Article  Google Scholar 

  • Young TP, Patridge N, Macrae A (1995) Long-term glades in Acacia bushland and their edge effects in Laikipia, Kenya. Ecol Appl 5(1):97–108

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ol Pejeta Conservancy for the opportunity to conduct this research. Fredrick Erii, John Lochukuya, Mathew Namoni, Jackson Ekadeli, James Wambogo, Wilson Murithi, Solveig Franziska Bucher, Michael Ellis, John Porensky, Johnathon Choge, Solomon Kipngeno Mutai, and Robert Osusu provided invaluable field assistance. We thank Giles Prettejohn, Nathan Gichohi, Samuel Mutisya, Joseph Mathenge, Batian Craig, Martin Mulama, Douglas Kamaru, Irene Anyango, and Caroline Ngweno for advice, assistance with experimental setup, and logistical support. We received helpful advice on experimental design and comments on the manuscript from V. Eviner, M. L. Cadenasso, K. E. Veblen, and five anonymous reviewers. This research complies with Kenyan law and was approved by the Kenyan Ministry of Science and Technology. Financial support came from National Science Foundation (NSF) GRF, NSF DDIG (09-09539), and UC Davis Plant Sciences Departmental Fellowships, Jastro-Shields and Benjamin Madson Research Scholarships (to LEM), and NSF LTREB DEB-08-16453 (to TPY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren M. Porensky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porensky, L.M., Young, T.P. Development of edge effects around experimental ecosystem hotspots is affected by hotspot density and matrix type. Landscape Ecol 31, 1663–1680 (2016). https://doi.org/10.1007/s10980-016-0344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0344-3

Keywords

Navigation