Skip to main content

Advertisement

Log in

Changes in soil carbon stock predicted by a process-based soil carbon model (Yasso07) in the Yanhe watershed of the Loess Plateau

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Contex

Soil carbon sequestration is an ecosystem process that can provide important ecosystem services such as climate regulation and mitigation of global warming. Spatiotemporal variation in the soil organic carbon (SOC) stock is the basic information needed for landscape management and determination of regional carbon budgets.

Objectives

The objective of this study was to evaluate the effect of ecological restoration on SOC stocks and determine the influences of multiple factors in the Yanhe watershed of the Loess Plateau.

Methods

We coupled the Yasso07 soil carbon model with remote sensing indices as model input. The model performance was evaluated by uncertainty and sensitivity analyses as well as validation against field measurement.

Results

The modeling captured the spatial pattern of SOC variability across the landscape generally well. Net primary productivity (NPP) was the foremost factor that affecting the spatiotemporal variation of SOC density. Converting cropland to grassland was the most efficient restoration type in soil carbon sequestration in the study period. Land use change influenced the spatial correlation between NPP and SOC density by altering both litter quantity and quality. The changes in land use area tended to have higher contributions to the changes in SOC stock than did the changes in SOC density for different land use types.

Conclusions

The overall effect of ecological restoration on soil carbon sequestration was dependent on the main vegetation restoration type and the time of recovery. Human-derived land use changes could have more substantial effects on soil carbon budgets compared to natural factors in a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamopoulos S, Voulgaridis E, Passialis C (2005) Variation of certain chemical properties within the stemwood of black locust (Robinia pseudoacacia L.). Eur J Wood Prod 63:327–333

    Article  CAS  Google Scholar 

  • Chang RY, Fu BJ, Liu GH, Wang S, Yao XL (2012) The effects of afforestation on soil organic and inorganic carbon: a case study of the Loess Plateau of China. Catena 95:145–152

    Article  CAS  Google Scholar 

  • Cheng JM, Cheng J, Yang XM (2011) Grassland vegetation and soil carbon sequestration in the Loess Plateau. J Nat Resour 26(3):401–411

    Google Scholar 

  • Conant RT, Smith GR, Paustian K (2003) Spatial variability of soil carbon in forested and cultivated sites: implications for change detection. J Environ Qual 32:278–286

    Article  CAS  PubMed  Google Scholar 

  • Dang Y, Ren W, Tao B, Chen G, Lu C, Yang J, Pan S, Wang G, Li S, Tian H (2014) Climate and land use controls on soil organic carbon in the Loess Plateau region of China. PLoS One 9(5):e95548. doi:10.1371/journal.pone.0095548

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng L, Liu GB, Shangguan ZP (2014) Land use conversion and changing soil carbon stocks in China’s grain-for-green’ program: a synthesis. Glob Change Biol 20(11):3544–3556. doi:10.1111/gcb.12508

    Article  Google Scholar 

  • Falloon P, Smith P, Bradley RI, Milne R, Tomlinson RW, Viner D, Livermore M, Brown TAW (2006) RothCUK—a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use Manage 22:274–288

    Article  Google Scholar 

  • Fang JY, Guo ZD, HU HF, Kato T, Muraoka H, Son Y (2014) Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biol. doi:10.1111/gcb.12512

    Google Scholar 

  • Feng X, Fu B, Yang X, Lv Y (2010) Remote sensing of ecosystem services: an opportunity for spatially explicit assessment. Chin Geogr Sci 20(6):522–535

    Article  Google Scholar 

  • Feng X, Fu B, Lu N, Zeng Y, Wu B (2013) How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China’s Loess Plateau. Sci Rep 2846. doi:10.1038/srep02846

  • Gong J, Chen LD, Fu BJ, Huang Y, Huang Z, Peng H (2006) Effects of land use on soil nutrients in the loess hilly area of the Loess Plateau, China. Land Degrad Dev 17:453–465

    Article  Google Scholar 

  • Grunwald S, Vasques GM (2010) Synthesis of knowledge on soil carbon spatial patterns across a large subtropical soil-landscape in Southern U.S. 19th world congress of soil science, soil solutions for a changing world. 1–6 August 2010, Brisbane, Australia

  • Hashimoto S, Wattenbach M, Smith P (2011) Litter carbon inputs to the mineral soil of Japanese Brown forest soils: comparing estimates from the RothC model with estimates from MODIS. J For Res 16:16–25. doi:10.1007/s10310-010-0209-6

    Article  CAS  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Matamala R (2005) Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biol 11:2057–2064

    Article  Google Scholar 

  • Jensen LS, Salo Y, Palmason F, Breland TA, Henriksen TM, Stenberg B, Pedersen A, Lundstro C, Esala M (2005) Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 273:307–326

    Article  CAS  Google Scholar 

  • Jobbágy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lauenroth WK (2000) Methods of estimating belowground net primary production. In: Sala OE, Jackson RB, Mooney HA et al (eds) Methods in ecosystem science. Springer, New York, pp 58–71

    Chapter  Google Scholar 

  • Li LB, Tu CL, Zhao ZQ, Cui LF, Liu WJ (2011) Distribution characteristics of soil organic carbon and its isotopic composition for soil profiles of Loess Plateau under different vegetation conditions. Earth Environ 39(4):441–448

    CAS  Google Scholar 

  • Liu W, Cheng JM, Chen FR, Gao Y (2010) Characteristic of organic carbon density and organic carbon storage in the natural grassland of center Loess Plateau. Acta Agrestia Sin 19(3):425–431

    Google Scholar 

  • Liu YC, Wang QF, Yu GR, Zhu XJ, Zhan XY, Guo Q, Yang H, Li SG, Hu ZM (2011a) Ecosystems carbon storage and carbon sequestration potential of two main tree species for the grain for green project on China’s hilly Loess Plateau. Acta Ecol Sin 31(15):4277–4286

    Google Scholar 

  • Liu ZP, Shao MA, Wang YQ (2011b) Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric Ecosyst Environ 142:184–194

    Article  Google Scholar 

  • Liu ZP, Shao MA, Wang YQ (2012) Large-scale spatial variability and distribution of soil organic carbon across the entire Loess Plateau, China. Soil Res 50:114–124

    Article  CAS  Google Scholar 

  • Lu N, Liski J, Chang RY, Akujärvi A, Wu X, Jin TT, Wang YF, Fu BJ (2013) Soil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China. Biogeosciences 10:7053–7063

    Article  CAS  Google Scholar 

  • Luo ZK, Wang EL, Bryan BA, King D, Zhao G, Pan XB, Bende-Michl U (2013) Meta-modeling soil organic carbon sequestration potential and its application at regional scale. Ecol Appl 23(2):408–420

    Article  PubMed  Google Scholar 

  • Meersmans J, De Ridder F, Canters F, De Baets S, Van Molle M (2009) A multiple regression approach to assess the spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 152:43–52

    Article  CAS  Google Scholar 

  • Mueller TG, Pierce FJ (2003) Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci Soc Am J 67:258–267

    Article  CAS  Google Scholar 

  • Ogle SM, Breidt FJ, Easter M, Williams S, Killian K, Paustian K (2010) Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Global Change Biol 16:810–822

    Article  Google Scholar 

  • Piao S, Fang J, He J (2006) Variations in vegetation net primary production in the Qinghai–Xizang Plateau, China, from 1982 to 1999. Clim Change 74:253–267. doi:10.1007/s10584-005-6339-8

    Article  CAS  Google Scholar 

  • Pickett STA, Cadenasso ML (1995) Landscape ecology: spatial heterogeneity in ecological systems. Science 269:331–334

    Article  CAS  PubMed  Google Scholar 

  • Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201

    Article  CAS  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone- carbon response functions as a model approach. Glob Change Bio 17:2415–2427. doi:10.1111/j.1365-2486.2011.02408.x

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Global Change Biol 6:317–328

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cy 7:811–841

    Article  Google Scholar 

  • Schulp CJE, Verburg PH (2009) Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agric Ecosyst Environ 133:86–97

    Article  Google Scholar 

  • Schulp CJE, Nabuurs GN, Verburg PH (2008) Future carbon sequestration in Europe—effects of land use change. Agric Ecosyst Environ 127:251–264

    Article  CAS  Google Scholar 

  • Shi H, Wen Z, Paull D (2013a) Estimation of carbon carrying capacity in the Yanhe River catchment of China’s Loess Plateau. Acta Agric Scand Sect B Soil Plant Sci 63(6):543–553. doi:10.1080/09064710.2013.820786

  • Shi SW, Zhang W, Zhang P, Yu YQ, Ding F (2013b) A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For Ecol Manage 296:53–63

    Article  Google Scholar 

  • Sievänen R, Salminen O, Lehtonen A, Ojanen P, Liski J, Ruosteenoja K, Tuomi M (2014) Carbon stock changes of forest land in Finland under different levels of wood use and climate change. Ann For Sci 71:255–265. doi:10.1007/s13595-013-0295-7

    Article  Google Scholar 

  • Song XZ, Peng CH, Zhou GM, Jiang H, Wang WF (2014) Chinese grain for green program led to highly increased soil organic carbon levels: a meta-analysis. Sci Rep 4:4460. doi:10.1038/srep04460

    PubMed Central  PubMed  Google Scholar 

  • Thum T, Räisänen P, Sevanto S, Tuomi M, Reick C, Vesala T, Raddatz T, Aalto T, Järvinen H, Altimir N, Pilegaard K, Zoltan N, Rambal S, Liski J (2011) Soil carbon model alternatives for ECHAM5/JSBACH climate model: evaluation and impacts on global carbon cycle estimates. J Geophys Res 116:G02028. doi:10.1029/2010JG001612

    Article  Google Scholar 

  • Todd-Brown KEO, Randerson JT, Hopkins F, Arora V, Hajima T, Jones C, Shevliakova E, Tjiputra J, Volodin E, Wu T, Zhang Q, Allison SD (2014) Changes in soil organic carbon storage predicted by earth system models during the 21st century. Biogeosciences 11:2341–2356

    Article  CAS  Google Scholar 

  • Tuomi M, Vanhala P, Karhu K, Fritze H, Liski J (2008) Heterotrophic soil respiration—comparison of different models describing its temperature dependence. Ecol Model 211(1–2):182–190

    Article  Google Scholar 

  • Tuomi M, Thum T, Jarvinen H, Fronzek S, Berg B, Harmon M, Trofymow JA, Sevanto S, Liski J (2009) Leaf litter decomposition-estimates of global variability based on Yasso07 model. Ecol Model 220(23):3362–3371

    Article  CAS  Google Scholar 

  • Tuomi M, Laiho R, Repo A, Liski J (2011a) Wood decomposition model for boreal forests. Ecol Model 222(3):709–718

    Article  CAS  Google Scholar 

  • Tuomi M, Rasinmaki J, Repo A, Vanhala P, Liski J (2011b) Soil carbon model Yasso07 graphical user interface. Environ Model Softw 26(11):1358–1362

    Article  Google Scholar 

  • Upadhyay TP, Solberg B, Sankhayan PL, Shahi C (2013) Land-use changes, forest/soil conditions and carbon sequestration dynamics: a bio-economic model at watershed level in Nepal. J Bioecon 15:135–170

    Article  Google Scholar 

  • Vagen TG, Winowiecki LA (2013) Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environ Res Lett 8:015011

    Article  Google Scholar 

  • Wang HQ, Cornell JD, Hall CAS, Marley DP (2002) Spatial and seasonal dynamics of surface soil carbon in the Luquillo experimental forest, Puerto Rico. Ecol Model 147:105–122

    Article  CAS  Google Scholar 

  • Wang CY, Zhou JB, Wang X, Xia ZM (2011a) Contents and biodegradation of soluble organic carbon in different plant residues from the Loess Plateau. Environ Sci 32:1139–1145

    Google Scholar 

  • Wang W, Dungan J, Hashimoto H, Michaelis A, Milesi C, Ichii K, Nemani R (2011b) Diagnosing and assessing uncertainties of terrestrial ecosystem models in multimodel ensemble experiment: 1. Primary production. Global Change Biol 17:1350–1366. doi:10.1111/j.1365-2486.2010.02309.x

    Article  Google Scholar 

  • Wang Z, Liu GB, Xu MX, Zhang J, Wang Y, Tang L (2012) Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena 99:26–33

    Article  CAS  Google Scholar 

  • Wiesmeier M, Prietzel J, Barthold F, Spörlein P, Geu U, Hangen E, Reischl A, Schilling B, von Lützow M, Kögel-Knabner I (2013) Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria)—implications for carbon sequestration. For Ecol Manage 295:162–172

    Article  Google Scholar 

  • Wu X, Lu N, Liski J, Akujärvi A, Liu GH, Wang YF, Li F, Zeng Y, Fu BJ (2014) Dynamics of soil organic carbon stock at the catchment scale in the Loess Plateau—Comparison of model simulation with measurements. Landscape Ecol. doi:10.1007/s10980-014-0110-3

  • Xu GC, Li ZB, Li P, Lu KX, Wang Y (2013) Spatial variability of soil organic carbon in a typical watershed in the source area of the middle Dan River, China. Soil Res 51:41–49

    Article  CAS  Google Scholar 

  • Yadav V, Malanson G (2008) Spatially explicit historical land use land cover and soil organic carbon transformations in Southern Illinois. Agric Ecosyst Environ 123:280–292

    Article  Google Scholar 

  • Yang S (2010) The evaluation of carbon in farmland in Yanhe River Catchment in Loess Hilly and Gully Region. Thesis of Northwest A & F University, China

  • Yang YH, Monhammat A, Feng JM, Zhou R, Fang JY (2007) Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 84:131–141

    Article  Google Scholar 

  • Yang XM, Cheng JM, Meng L, Han JJ, Fan WJ (2010) Analysis on soil organic carbon and nutrients storages in different forests in Ziwuling. Res Soil Water Conserv 17(3):130–134

    Google Scholar 

  • Zhang N, Liang YM (2002) Studies on the below-ground/above-ground biomass ratio of natural grassland in loess hilly region. Acta Pratacult Sin 11(2):72–78

    CAS  Google Scholar 

  • Zhang XB, Shangguan ZP (2005) The bio-cycle patterns of nutrient elements and stand biomass in forest communities in hilly loess regions. Acta Ecol Sin 25(3):527–537

    CAS  Google Scholar 

  • Zhang C, Liu GB, Xue S, Sun C (2013) Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. Eur J Soil Biol 54:16–24

  • Zhang K, Dang H, Tan S, Cheng X, Zhang Q (2010) Change in soil organic carbon following the ‘grain-for-green’ programme in China. Land Degrad Dev 21:16–28

    Article  Google Scholar 

  • Zhao SW, Lu L, Liu NN, Wu JS, Su J, Yang YH (2006) Effects of ecosystem conversion on the characteristics of soil organic carbon in Ziwuling forest region. Acta Bot Boreal Occident Sin 26(5):1030–1035

    CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the National Natural Science Foundation of China (Nos. 41230745, 41201182), the Chinese Academy of Sciences (Nos. XDA05050602-05-01 and GJHZ1215), and the Academy of Finland (No. 256231). We thank the three anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Akujärvi, A., Wu, X. et al. Changes in soil carbon stock predicted by a process-based soil carbon model (Yasso07) in the Yanhe watershed of the Loess Plateau. Landscape Ecol 30, 399–413 (2015). https://doi.org/10.1007/s10980-014-0132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0132-x

Keywords

Navigation