Skip to main content

Advertisement

Log in

The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

It has been suggested that the composition of different non-crop land-use types along with tree density regulate local biodiversity in agricultural landscapes. However, specific data is limited, not least from tropical regions. We examined how different land-use types and forest cover at different scales influenced the abundance and species composition of predatory arthropods in 40 homegardens of southwest Ethiopia. We collected specimens using pitfall traps during two separate months and related sample composition to land-use in the vicinity (1 ha plot, local scale, field data) and tree cover within 200 and 500 m radius zones (landscape scale, satellite data). Spiders, beetles and ants were most common. A high abundance of ants was found in tree-rich homegardens while the variation in abundance of spiders was best explained by the interaction between tree cover at the local and landscape scales. The highest spider abundances were found when either the homegarden or the surroundings had high tree-cover and was lower in both the most tree-rich and tree-poor landscape–garden combinations. In addition, open non-crop cover (mostly grasslands) and ensete (a banana-like perennial crop) favored spiders. This pattern demonstrates that different land-use types at different scales can interact to create variations in biodiversity across an agricultural landscape. To enhance numbers of predatory arthropods in homegardens, which may be beneficial for natural pest control, our results suggest that different strategies are needed depending on the target group or species. Grasslands, ensete fields and tree-rich habitats seem to play important roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abate T, van Huis A, Ampofo JK (2000) Pest management strategies in traditional agriculture: an African perspective. Annu Rev Entomol 45:631–659

    Article  CAS  PubMed  Google Scholar 

  • Abebe T, Wiersum KF, Bongers F (2010) Spatial and temporal variation in crop diversity in agroforestry homegardens of southern Ethiopia. Agroforest Syst 78:309–322

    Article  Google Scholar 

  • Altieri MA, Todd JW (1981) Some influences of vegetation diversity on insect communities of Georgia soybean fields. Protect Ecol 3:333–338

    Google Scholar 

  • Ango TG, Börjeson L, Senbeta F, Hylander K (2014) Balancing ecosystem services and disservices : smallholder farmers’ use and management of forest and trees in an agricultural landscape in Southwestern Ethiopia. Ecol Society 19:30

    Article  Google Scholar 

  • Arellano L, León-Cortés JL, Halffter G (2008) Response of dung beetle assemblages to landscape structure in remnant natural and modified habitats in southern Mexico. Insect Conserv Divers 1:253–262

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2013) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4

  • Berghoff SM, Maschwitz U, Linsenmair KE, Linsenmair KE (2003) Influence of the hypogaeic army ant Dorylus (Dichthadia) laevigatus on tropical arthropod communities. Oecologia 135:149–157

    Article  PubMed  Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bianchi FJJA, Schellhorn NA, Cunningham SA (2013) Habitat functionality for the ecosystem service of pest control : reproduction and feeding sites of pests and natural enemies. Agric Forest Entomol 15:12–23

    Article  Google Scholar 

  • Boscolo D, Metzger PJ (2011) Isolation determines patterns of species presence in highly fragmented landscapes. Ecography 34:1018–1029

    Article  Google Scholar 

  • Cayuela L, Golicher DJ, Benayas JMR, González-Espinosa M, Ramírez-Marcial N (2006) Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J Appl Ecol 43:1172–1181

    Article  Google Scholar 

  • Chaplin-Kramer R, Kremen C (2012) Pest control experiments show benefits of complexity at landscape and local scales. Ecol Appl 22:1936–1948

    Article  PubMed  Google Scholar 

  • Daily GC, Ehrlich PR (1996) Nocturnality and species survival. Proc Natl Acad Sci 93:11709–11712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Digweed SC, Currie CR, Carcamo HA, Spence JR (1995) Digging out the ‘digging-in effect’ of pitfall traps: influences of depletion and disturbance on catches of ground beetles (Coleoptera: Carabidae). Pedobiologia 39:561–567

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monograph 67:345–366

    Google Scholar 

  • Fernandest ECM, Nair PKR (1986) An evaluation of the structure and function of tropical homegardens. Agric Syst 21:279–310

    Article  Google Scholar 

  • Friis I, Demissew S, van Breugel P (2010) Atlas of the potential vegetation of Ethiopia. Det Kongelige Danske Videnskabernes Selska, Specialtrykkeriet Viborg a-s, Copenhagen, Denmark

    Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, Schmidt N, Neal MO, Mueller E, Chacon J, Heimpeld GE (2010) Landscape composition influences the activity density of carabidae and arachnida in soybean fields. Biol Control 55:11–19

    Article  Google Scholar 

  • Geiger F, Wäckers FL, Bianchi FJJA (2009) Hibernation of predatory arthropods in semi-natural habitats. Biocontrol 54:529–535

    Article  Google Scholar 

  • Gove AD, Majer JD, Rico-gray V (2005) Methods for conservation outside of formal reserve systems : the case of ants in the seasonally dry tropics of Veracruz, Mexico. Biol Conserv 126:328–338

    Article  Google Scholar 

  • Griffiths GJK, Holland JM, Bailey A, Thomas MB (2008) Efficacy and economics of shelter habitats for conservation biological control. Biol Control 45:200–209

    Article  Google Scholar 

  • Hájek M, Tichý L, Schamp BS, Zelený D, Roleček J, Hájková P, Apostolova I, Dítě D (2007) Testing the Species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos 116:1311–1322

    Article  Google Scholar 

  • Holland JM, Birkett T, Begbie M, Southway SE, Thomas CFG (2003) The spatial dynamics of predatory arthropods and the importance of crop and adjacent margin habitats. IOBC/wprs Bull 26:65–70

    Google Scholar 

  • Hunter MD (2002) Landscape structure, habitat fragmentation, and the ecology of insects. Agric For Entomol 4:159–166

    Article  Google Scholar 

  • Hylander K, Nemomissa S, Delrue J, Enkosa W (2013) Effects of coffee management on deforestation rates and forest integrity. Conserv Biol 27:1031–1040

    PubMed  Google Scholar 

  • Jocqué R, Alderweireldt M (2005) Lycosidae: the grassland spiders. In: Deltsv C, Stoev P (eds) Eur arachn Acta zool bulgar. (Suppl 1), pp 125–130

  • Jonsson MS, Wratten D, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45:172–175

    Article  Google Scholar 

  • Kakkar N, Gupta SK (2010) Diversity and seasonal fluctuations in dung beetle (Coleoptera) community in Kurukshetra, India. Entomol Res 40:189–192

    Article  Google Scholar 

  • Karp DS, Mendenhall CD, Sand RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC (2013) Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett 16:1339–1347

    Article  PubMed  Google Scholar 

  • Kromp B, Steinberger K (1992) Grassy field margins and arthropod diversity: a case study on ground beetles and spiders in eastern Austria (Coleoptera: Carabidae; Arachnida: Araneae, Opiliones). Agric Ecosyst Environ 40:71–93

    Article  Google Scholar 

  • Kruess A (2003) Effects of landscape structure and habitat type on a plant-herbivore-parasitoid community. Ecography 26:283–290

    Article  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584

    Article  CAS  PubMed  Google Scholar 

  • Lemessa D, Hylander K, Hambäck P (2013) Composition of crops and land-use types in relation to crop raiding pattern at different distances from forests. Agric Ecosyst Environ 167:71–78

    Article  Google Scholar 

  • Maisonhaute J-É, Peres-Neto P, Lucas É (2010) Influence of agronomic practices, local environment and landscape structure on predatory beetle assemblage. Agric Ecosyst Environ 139:500–507

    Article  Google Scholar 

  • Maudsley M, Seeley B, Lewis O (2002) Spatial distribution patterns of predatory arthropods within an English hedgerow in early winter in relation to habitat variables. Agric Ecosyst Environ 89:77–89

    Article  Google Scholar 

  • McCann JC (1995) People of the plow: an agricultural history of Ethiopia, 1800–1990. The University of Wisconsin Press, Madison

    Google Scholar 

  • Nielsen MM (2011) Extraction of different urban area categories from satellite images using window independent context segmentation. In: Stilla U, Gamba P, Juergens C, Maktav D (eds) JURSE 2011—Joint Urban Remote Sensing Event Munich, Germany

  • Nigussie A, Kissi E (2012) Physicochemical characterization of Nitisol in southwestern Ethiopia and its fertilizer recommendation using NuMaSS. Glob Adv Res J Agric Sci 1:66–73

    Google Scholar 

  • O’Rourke M, Rienzo-Stack K, Power AG (2011) A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol Appl 21:1782–1791

    Article  PubMed  Google Scholar 

  • Öberg S, Mayr S, Dauber J (2008) Landscape effects on recolonization patterns of spiders in arable fields. Agric Ecosyst Environ 123:211–218

    Article  Google Scholar 

  • Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan tutorial. Community Ecology Package. http://vegan.r-forge.r-project.org/

  • Ottonetti L, Tucci L, Frizzi F, Chelazzi G, Santini G (2010) Changes in ground-foraging ant assemblages along a disturbance gradient in a tropical agricultural landscape. Ethol Ecol Evol 22:73–86

    Article  Google Scholar 

  • Peters MK, Lung T, Schaab G, Wa J (2011) Deforestation and the population decline of the army ant Dorylus wilverthi in western Kenya over the last century. J Appl Ecol 48:697–705

    Article  Google Scholar 

  • Peters MK, Fischer G, Garcia FH, Lung T, Wägele JW (2013) Spatial variation in army ant swarm raiding and its potential effect on biodiversity. Biotropica 45:54–62

    Article  Google Scholar 

  • Peyre A, Guidal A, Wiersum KF, Bongers F (2006) Dynamics of homegarden structure and function in Kerala, India. Agroforest Syst 66:101–115

    Article  Google Scholar 

  • Philpott SM, Armbrecht I (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol 31:369–377

    Article  Google Scholar 

  • Pluess T, Opatovsky I, Gavish-Regev E, Lubin Y, Schmidt-Entling MH (2010) Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. Agric Ecosyst Environ 137:68–74

    Article  Google Scholar 

  • Pollard KA, Holland JM (2006) Arthropods within the woody element of hedgerows and their distribution pattern. Agric Forest Entomol 8:203–211

    Article  Google Scholar 

  • Prasad RP, Snyder WE (2006) Polyphagy complicates conservation biological control that targets generalist predators. J Appl Ecol 43:343–352

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    Article  PubMed  Google Scholar 

  • Rusch A, Valantin-Morison M, Sarthou J, Roger-Estrada J (2010) Biological control of insect pests in agroecosystems: effects of crop management, farming systems and semi-natural habitats at the landscape scale: a review. Adv Agron 109:219–259

    Article  Google Scholar 

  • Schmidt MH, Tscharntke T (2005) Landscape context of sheet web spider (Araneae: Linyphiidae) abundance in cereal fields. J Biogeogr 32:467–473

    Article  Google Scholar 

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:157–166

    Google Scholar 

  • Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG, Biesmeijer JC, Sait SM (2013) Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol Rev 88:1002–1021

    PubMed  Google Scholar 

  • Teketay D (1999) History, botany and ecological requirements of coffee. Walia 20:28–50

    Google Scholar 

  • Thomson LJ, Hoffmann AA (2013) Spatial scale of benefits from adjacent woody vegetation on natural enemies within vineyards. Biol Control 64:57–65

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist T, Kleijn D, Rand T, Tylianakis J, Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309

    Article  Google Scholar 

  • Tscharntke T, Sekercioglu C, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944–951

    Article  PubMed  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Vanbergen AJ, Woodcock BA, Koivula M, Niemelä J, Kotze DJ, Bolger T, Golden V, Dubs F, Boulanger G, Serrano J, Lencina JL, Serrano A, Aguiar C, Grandchamp A-C, Stofer S, Szél G, Ivits E, Adler P, Markus J, Watt AD (2010) Trophic level modulates carabid beetle responses to habitat and landscape structure: a pan-European study. Ecol Entomol 35:226–235

    Article  Google Scholar 

  • Vele A, Holusa J, Frouz J, Konvicka O (2011) Local and landscape drivers of ant and carabid beetle communities during spruce forest succession. Euro J Soil Biol 47:349–356

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0, http://www.stats.ox.ac.uk/pub/MASS4

  • Weibull A-C, Östman Ö, Granqvist A (2003) Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers Conserv 12:1335–1355

    Article  Google Scholar 

  • Westerberg L, Östman Ö, Wennergren U (2005) Movement effects on equilibrium distributions of habitat generalists in heterogeneous landscapes. Ecol Model 188:432–447

    Article  Google Scholar 

  • With KA, Pavuk DM, Worchuck JL, Oates RK, Fisher JL (2002) Threshold effects of landscape structure on biological control in agroecosystems. Ecol Appl 12:52–65

    Article  Google Scholar 

  • Woltz JM, Isaacs R, Landis DA (2012) Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric Ecosyst Environ 152:40–49

    Article  Google Scholar 

  • Woodcock BA (2005) Pitfall trapping in ecological studies. In: Simon Leather (ed) insect sampling in forest ecosystems. Blackwell Publishing Company, Oxford, pp 37–57

    Chapter  Google Scholar 

Download references

Acknowledgments

The study was supported by the Swedish International Development Cooperation Agency (SIDA) (contract number: SWE-2009-134) and Formas (contract number: 229-2009-991) [to KH]. Our deepest gratitude goes to a number of expert taxonomists: Julio Ferrer helped us in sorting and identifying the arthropod specimens to order, family and species level, Yves Gomy identified most of the Histeridae, Rudy Jocqué identified the spiders and Gary Alpert identified the ants. We would also like to thank our field assistants, Raya Aba Oli and Konjit Dereje, for their unreserved help and keen interest during data collection. Finally our deepest gratitude goes to Anders Brun and Michael Nielsen for helping us with the land-use composition analysis from the satellite image of our study landscape.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debissa Lemessa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemessa, D., Hambäck, P.A. & Hylander, K. The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape. Landscape Ecol 30, 167–180 (2015). https://doi.org/10.1007/s10980-014-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0115-y

Keywords

Navigation