Skip to main content

Advertisement

Log in

Adapting agricultural land management to climate change: a regional multi-objective optimization approach

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrammon (2010) The Swiss ammonia model. Federal Office for the Environment FOEN, Bern

  • Ammann C, Spirig C, Leifeld J, Neftel A (2009) Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. Agric Ecosyst Environ 133(3–4):150–162

    Article  CAS  Google Scholar 

  • Betts R (2007) Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B 59(3):602–615

    Article  Google Scholar 

  • BFS (2004) Arealstatistik der Schweiz, Bundesamt für Statistik; SwiBFS (2004) Arealstatistik der Schweiz, Bundesamt für Statistik, Neuchatel

  • BFS (2012) Soil suitability map of Switzerland. GEOSTAT, Neuchatel

  • Bindi M, Olesen J (2010) The responses of agriculture in Europe to climate change. Reg Environ Change 11(S1):151–158

    Article  Google Scholar 

  • Bohle C, Maturana S, Vera J (2010) A robust optimization approach to wine grape harvesting scheduling. Eur J Oper Res 200(1):245–252

    Article  Google Scholar 

  • Boomiraj K, Chakrabarti B, Aggarwal P, Choudhary R, Chander S (2010) Assessing the vulnerability of Indian mustard to climate change. Agric Ecosyst Environ 138(3–4):265–273

    Article  Google Scholar 

  • BUWAL (2003) Nationales Bodenbeobachtungsnetz: Messresultate 1985–1991 (National Soil Observation Network: results 1985–1991). Schriftenreihe Umwelt Nr. 200. Bundesamt für Umwelt, Wald und Landschaft (Hrsg.), Bern, 134 S., Anhnge 175 S

  • Calanca P (2007) Climate change and drought occurrence in the Alpine region: how severe are becoming the extremes? Glob Planet Change 57(1–2):151–160

    Article  Google Scholar 

  • Ceglar A, Kajfež-Bogataj L (2012) Simulation of maize yield in current and changed climatic conditions: addressing modelling uncertainties and the importance of bias correction in climate model simulations. Eur J Agron 37(1):83–95

    Article  Google Scholar 

  • Challinor A, Ewert F, Arnold S, Simelton E, Fraser E (2009) Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot 60(10):2775–2789

    Article  PubMed  CAS  Google Scholar 

  • de Bodt E, Cottrell M, Verleysen M (2002) Statistical tools to assess the reliability of self-organizing maps. Neural Netw 15(8–9):967–978

    Article  PubMed  Google Scholar 

  • Dogliotti S, van Ittersum M, Rossing W (2005) A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay. Agric Syst 86(1):29–51

    Article  Google Scholar 

  • Flisch R, Sinaj S, Charles R, Richner W (2009) GRUDAF 2009. Principles for fertilisation in arable and fodder production (in German). Agrarforschung 16(2):1–100

    Google Scholar 

  • FOAG (2011) Agrarinformationssystem AGIS 2007. Individual-Farm Database of the Federal Office for Agriculture

  • FOEN (2012a) Adaptation to climate change in Switzerland. Goals, challenges and fields of action. First part of the Federal Councils strategy. Adopted on 2 March 2012. Edited by the Federal Office for the Environment. Tech. Rep.

  • FOEN (2012b) Ground Water Protection Zones. Federal Office of Environment, Bern

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18(8):873–900

    Article  Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale P (2006) Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J Geophys Res 111(D6):1–22

    Article  Google Scholar 

  • Fuhrer J, Jasper K (2012) Demand and supply of water for agriculture: influence of topography and climate in pre-alpine, meso-scale catchments. Nat Resour 3:145–155

    Google Scholar 

  • Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Change 79(1–2):79–102

    Article  CAS  Google Scholar 

  • Gao Q, Kang M, Xu H, Jiang Y, Yang J (2010) Optimization of land use structure and spatial pattern for the semi-arid loess hilly-gully region in China. CATENA 81(3):196–202

    Article  Google Scholar 

  • Groot J, Rossing W, Jellema A, Stobbelaar D, Renting H, Van Ittersum M (2007) Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality—a methodology to support discussions on land-use perspectives. Agric Ecosyst Environ 120(1):58–69

    Article  Google Scholar 

  • Groot J, Oomen G, Rossing W (2012) Multi-objective optimization and design of farming systems. Agric Syst 110:63–77

    Article  Google Scholar 

  • Grundmann J, Schütze N, Schmitz G.H, Al-Shaqsi S (2011) Towards an integrated arid zone water management using simulation-based optimisation. Environ Earth Sci 65(5):1381–1394

    Article  Google Scholar 

  • Ines A, Honda K, Dasgupta A, Droogers P, Clemente R (2006) Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture. Agric Water Manag 83(3):221–232

    Article  Google Scholar 

  • IPCC (2007) IPCC, 2007: climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Irmak S, Odhiambo LO, Kranz WL, Eisenhauer DE (2011) Irrigation efficiency and uniformity and crop water use efficiency. University of Nebraska, Lincoln

    Google Scholar 

  • Janssen S, Oomen R, Hengsdijk H, Van Ittersum M (2009) Agricultural Management module of FSSIM, Production Enterprice Generator, Production Technique Generator, Simple Management Translator and Technical Coefficient Generator, SEAMLESS Report No.44, SEAMLESS integrated project, EU 6th Framework Programme, con. Tech. Rep.

  • Klein T, Calanca P, Holzkämper A, Lehmann N, Roesch A, Fuhrer J (2012) Using farm accountancy data to calibrate a crop model for climate impact studies. Agric Syst 111:23–33

    Article  Google Scholar 

  • Klein T, Holzkämper A, Calanca P, Fuhrer J (2013) Adaptation options under climate change for multifunctional agriculture: a simulation study for western Switzerland. Reg Environ Change (in press)

  • Kohonen T (2001) Self-organizing maps. Number 30 in Springer series in information sciences, 3rd edn. Springer, Berlin

    Google Scholar 

  • Koo B, O’Connell P (2006) An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England. Sci Total Environ 358(1–3):1–20

    PubMed  CAS  Google Scholar 

  • Körner C, Morgan J, Norby R (2007) CO2 fertilization: when, where, how much? In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 9–21

    Chapter  Google Scholar 

  • Kuo S, Merkley G, Liu C (2000) Decision support for irrigation project planning using a genetic algorithm. Agric Water Manag 45(3):243–266

    Article  Google Scholar 

  • Latinopoulos D (2007) Multicriteria decision-making for efficient water and land resources allocation in irrigated agriculture. Environ Dev Sustain 11(2):329–343

    Article  Google Scholar 

  • Ledermann T, Schneider F (2008) Verbreitung der Direktsaat in Der Schweiz (in German). Agrarforschung 15(8):408–413

    Google Scholar 

  • Lehmann N, Finger R, Klein T, Calanca P, Walter A (2013) Adapting crop management practices to climate change: modeling optimal solutions at the field scale. Agric Syst 117:55–65

    Article  Google Scholar 

  • Li Z, Liao H, Coit D (2009) A two-stage approach for multi-objective decision making with applications to system reliability optimization. Reliab Eng Syst Saf 94(10):1585–1592

    Article  Google Scholar 

  • Liu Y, Weisberg R, Mooers C (2006) Performance evaluation of the self-organizing map for feature extraction. J Geophys Res 111(C5):1–14

    Article  Google Scholar 

  • Long S, Ainsworth E, Leakey A, Nösberger J, Ort D (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Sci Agric 312(5782):1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Lotze-Campen H, Schellnhuber H.-J (2009) Climate impacts and adaptation options in agriculture: what we know and what we don’t know. Journal für Verbraucherschutz und Lebensmittelsicherheit 4(2):145–150

    Article  Google Scholar 

  • Lotze-Campen H, Müller C, Bondeau A, Rost S, Popp A, Lucht W (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric Econ 39(3):325–338

    Google Scholar 

  • Lu C, van Ittersum M, Rabbinge R (2004) A scenario exploration of strategic land use options for the Loess Plateau in northern China. Agric Syst 79(2):145–170

    Article  Google Scholar 

  • Malagoli P, Laine P, Rossato L, Ourry A (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. Ann Bot 95(5):853–861

    Article  PubMed  CAS  Google Scholar 

  • Maltas A, Charles R, Jeangros B, Sinaj S (2013) Effect of organic fertilizers and reduced-tillage on soil properties, crop nitrogen response and crop yield: results of a 12-year experiment in Changins, Switzerland. Soil Tillage Res 126:11–18

    Article  Google Scholar 

  • Mandryk M, Reidsma P, Van Ittersum M (2012) Scenarios of long-term farm structural change for application in climate change impact assessment. Landsc Ecol 27(4):509–527

    Article  Google Scholar 

  • Mayer D, Rossing W, DeVoil P, Groot J, McPhee M, Oltjen J (2008) Optimal management of agricultural systems. In: Yang A, Shan Y, Bui L (eds) Success in evolutionary computation, vol 92 of Studies in computational intelligence. Springer, Berlin, pp 141–163

    Chapter  Google Scholar 

  • Moriondo M, Bindi M, Kundzewicz Z, Szwed M, Chorynski A, Matczak P, Radziejewski M, McEvoy D, Wreford A (2010) Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Change 15(7):657–679

    Article  Google Scholar 

  • Nearing M, Pruski F, O’Neal M (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50

    Google Scholar 

  • Norouzi K, Rakhshandehroo G (2011) A self organizing map based hybrid multi-objective optimization of water distribution networks. Iran J Sci Technol Trans B 35:105–119

    Google Scholar 

  • Olesen J, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16(4):239–262

    Article  Google Scholar 

  • Parry M, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14(1):53–67

    Article  Google Scholar 

  • Power A (2010) Ecosystem services and agriculture: trade-offs and synergies. Philos Trans R Soc B 365(1554):2959–2971

    Article  Google Scholar 

  • Prasuhn V (2012) On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Tillage Res 120:137–146

    Article  Google Scholar 

  • Prasuhn V, Liniger H.P, Hurni H, Friedli S (2007) Carte du risque d’érosion du sol en Suisse. Rev Suisse Agric 39(2):53–59

    Google Scholar 

  • Renard K, Foster G, Weesies G, McCool D, Yoder D (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703. US Dept Agriculture, Agriculture Research Service, p 384

  • Rickards L, Howden S (2012) Transformational adaptation: agriculture and climate change. Crop Pasture Sci 63(3):240–250

    Article  Google Scholar 

  • Robra J, Mastrullo J (2011) Evaluation des besoins en eau d’irrigation dans la Broye. Mandaterre, Yverdon, Switzerland. Tech. Rep.

  • Rötter R, Palosuo T, Pirttioja N, Dubrovský M, Salo T, Fronzek S, Aikasalo R, Trnka M, Ristolainen A, Carter T (2011) What would happen to barley production in Finland if global warming exceeded 4C? A model-based assessment. Eur J Agron 35(4):205–214

    Article  Google Scholar 

  • Ruane A, Cecil LD, Horton R, Gordón R, McCollum R, Brown D, Killough B, Goldberg R, Greeley A, Rosenzweig C (2013) Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agric For Meteorol 170:132–145

    Article  Google Scholar 

  • Sadeghi S, Jalili K, Nikkami D (2009) Land use optimization in watershed scale. Land Use Policy 26(2):186–193

    Article  Google Scholar 

  • Salinger J, Sivakumar M, Motha R (2005) Increasing climate variability and change: reducing the vulnerability of agriculture and forestry, vol 70. Springer, Berlin

    Book  Google Scholar 

  • Santeriveira I, Crecentemaseda R, Mirandabarros D (2008) GIS-based planning support system for rural land-use allocation. Comput Electron Agric 63(2):257–273

    Article  Google Scholar 

  • Scholz G, Quinton J, Strauss P (2008) Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. CATENA 72(1):91–105

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice I, Araújo M, Arnell N, Bondeau A, Bugmann H, Carter T, Gracia C, de la Vega-Leinert A, Erhard M, Ewert F, Glendining M, House J, Kankaanpää S, Klein R, Lavorel S, Lindner M, Metzger M, Meyer J, Mitchell T, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes M, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Sci Agric 310(5752):1333–1337

    Article  PubMed  Google Scholar 

  • Schuetze N, Schmitz G (2010) OCCASION: new planning tool for optimal climate change adaptation strategies in irrigation. J Irrig Drainage Eng ASCE 136(12):836–846

    Article  Google Scholar 

  • Semenov M, Barrow E (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35(4):397–414

    Article  Google Scholar 

  • Seppelt R, Voinov A (2002) Optimization methodology for land use patterns using spatially explicit landscape models. Ecol Model 151(2–3):125–142

    Article  Google Scholar 

  • Seppelt R, Voinov A (2003) Optimization methodology for land use patterns-evaluation based on multiscale habitat pattern comparison. Ecol Model 168(3):217–231

    Article  Google Scholar 

  • Seppelt R, Lautenbach S, Volk M (2013) Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Environ Sust (in press)

  • Smit B, Burton I, Klein R.J.T, Wandel J (2000) An anatomy of adaptation to climate change and variability. Clim Change 45:223–251

    Article  Google Scholar 

  • Smit B, Skinner M.W (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strateg Glob Change 7:85–114

    Article  Google Scholar 

  • Soares G, Parreiras R, Jaulin L, Vasconcelos J, Maia C (2009) Interval robust multi-objective algorithm. Nonlinear Anal 71(12):1818–1825

    Article  Google Scholar 

  • Soussana J-F, Graux A-I, Tubiello F (2010) Improving the use of modelling for projections of climate change impacts on crops and pastures. J Exp Bot 61(8):2217–2228

    Article  PubMed  CAS  Google Scholar 

  • Stöckle CO, Martin S, Campbell G (1994) CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric Syst 46(3):335–359

    Article  Google Scholar 

  • Stöckle C.O, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron. 18(3–4):289–307

    Article  Google Scholar 

  • Stuart M, Gooddy D, Bloomfield J, Williams A (2011) A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci Total Environ 409(15):2859–73

    Article  PubMed  CAS  Google Scholar 

  • Supit I, Van Diepen C, de Wit A, Kabat P, Baruth B, Ludwig F. (2010) Recent changes in the climatic yield potential of various crops in Europe. Agric Syst 103(9):683–694

    Article  Google Scholar 

  • Swisstopo (2001) Federal Office of Topography. DHM25

  • Thaler S, Eitzinger J, Trnka M, Dubrovský M (2012) Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. J Agric Sci 150(Part 5):537–555

    Article  CAS  Google Scholar 

  • Torriani D, Calanca P, Schmid S, Beniston M, Fuhrer J (2007) Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Clim Res 34(1):59–69

    Article  Google Scholar 

  • van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Vullioud P (2005) Assolement et rotation des grandes cultures. Rev Suisse Agric 37(4):1–4

    Google Scholar 

  • Wehrens R, Buydens MCB (2007) Self- and super-organizing maps in R: the Kohonen package. J Stat Softw 21(5):1–19

    Google Scholar 

  • White J, Hoogenboom G, Kimball B, Wall G (2011) Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124(3):357–368

    Article  Google Scholar 

  • Xevi E, Khan S (2005) A multi-objective optimisation approach to water management. J Environ Manag 77(4):269–277

    Article  CAS  Google Scholar 

  • Zander P, Kächele H (1999) Modelling multiple objectives of land use for sustainable development. Agric Syst 59(3):311–325

    Article  Google Scholar 

  • Zhang X, Nearing M (2005) Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. CATENA 61(2–3):185–195

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the AGWAM project (No. 406140_125957/1) financed by the Swiss National Foundation in the framework of the National Research Program 61.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy Klein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, T., Holzkämper, A., Calanca, P. et al. Adapting agricultural land management to climate change: a regional multi-objective optimization approach. Landscape Ecol 28, 2029–2047 (2013). https://doi.org/10.1007/s10980-013-9939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9939-0

Keywords

Navigation