Skip to main content

Advertisement

Log in

Global analysis and simulation of land-use change associated with urbanization

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

A combination of rapid population growth and an accelerating demographic shift from rural to urbanized habitats has resulted in urbanization becoming an increasingly global phenomenon. Two alternate hypotheses describing urban landscape trajectories suggest urbanization is either leading to more homogeneous global patterns or urbanization has dichotomous trajectories of increasing dispersal or coalescence. To better understand the global variation in urban land-cover patterns and trajectories we described the variation in urban landscape structure for 120 cities distributed throughout the world assessed at circa 1990 and 2000. We coupled these data to a low-dimensional neighborhood based model of urban growth using a data-model fusion approach. Trajectories of urban growth were assessed using both the original data and model projections to 2030. The patterns of landscape change were related to both the rate of growth and income. The historical patterns of change showed a trend of increasing landscape complexity and this trend was projected to continue. Urban rate of growth was closely related to the change in several landscape metrics. Income was associated with landscape dynamics and this effect interacted with city size. Large cities were less sensitive to the income effect than small cities. Along with changes to the magnitude of each metric, the overall variation in metrics between years generally exhibited a decrease in variability and this variability was projected to continue decreasing. These findings supported the hypothesis that urban landscapes are becoming more homogeneous and that the dispersal-coalescing dichotomy represent endpoints rather than alternate states of urban growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alberti M (1999) Modeling the urban ecosystem: a conceptual framework. Environ Plann B Plann Des 26:605–630

    Article  Google Scholar 

  • Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198

    Article  Google Scholar 

  • Angel S, Parent JP, Civco DL (2007) Urban sprawl metrics: an analysis of global urban expansion using GIS. Proceedings of the 2007 American society of photogrammetry and remote sensing annual convention, Tampa, FL, p 12

  • Batty M (1991) Generating urban forms from diffusive growth. Environ Plan A 23:511–544

    Article  Google Scholar 

  • Batty M (2005) Agents, cells, and cities: new representational models for simulating multiscale urban dynamics. Environ Plan A 37:1373–1394

    Article  Google Scholar 

  • Batty M (2008) The size, scale, and shape of cities. Science 319:769–771

    Article  CAS  PubMed  Google Scholar 

  • Berling-Wolff S, Wu JG (2004) Modeling urban landscape dynamics: a case study in Phoenix, USA. Urban Ecosyst 7:215–240

    Article  Google Scholar 

  • Bierwagen BG (2005) Predicting ecological connectivity in urbanizing landscapes. Environ Plann B Plann Des 32:763–776

    Article  Google Scholar 

  • Bousquet P, Ciais P, Peylin P, Ramonet M, Monfray P (1999) Inverse modeling of annual atmospheric CO2 sources and sinks 1. Method and control inversion. J Geophys Res-Atmospheres 104:26161–26178

    Article  CAS  Google Scholar 

  • Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob Chang Biol 11:335–355

    Article  Google Scholar 

  • Brazel A, Selover N, Vose R, Heisler G (2000) The tale of two climates—Baltimore and Phoenix urban LTER sites. Clim Res 15:123–135

    Article  Google Scholar 

  • Cardille J, Turner M, Clayton M, Gergel S, Price S (2005) METALAND: characterizing spatial patterns and statistical context of landscape metrics. Bioscience 55:983–988

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B Plann Des 24:247–261

    Article  Google Scholar 

  • Dale VH, Akhtar F, Aldridge M, Baskaran L, Berry M, Browne M, Chang M, Efroymson R, Garten C, Lingerfelt E, Stewart C (2008) Modeling the effects of land use on the quality of water, air, noise, and habitat for a five-county region in Georgia. Ecol Soc 13

  • Decker EH, Elliott S, Smith FA, Blake DR, Rowland FS (2000) Energy and material flow through the urban ecosystem. Annu Rev Energy Environ 25:685–740

    Article  Google Scholar 

  • DeZonia B, Mladenoff D (2004) IAN. Department of Forest Ecology and Management, University of Wisconsin, WI

    Google Scholar 

  • DiBari JN (2007) Evaluation of five landscape-level metrics for measuring the effects of urbanization on landscape structure: the case of Tucson, Arizona, USA. Landsc Urban Plan 79:308–313

    Article  Google Scholar 

  • Dietzel C, Herold M, Hemphill JJ, Clarke KC (2005) Spatio-temporal dynamics in California’s central valley: empirical links to urban theory. Int J Geogr Inf Sci 19:175–195

    Article  Google Scholar 

  • Fagan WF, Meir E, Carroll SS, Wu JG (2001) The ecology of urban landscapes: modeling housing starts as a density-dependent colonization process. Landscape Ecol 16:33–39

    Article  Google Scholar 

  • Farrell CR (2008) Bifurcation, fragmentation or integration? The racial and geographical structure of US metropolitan segregation, 1990–2000. Urban Stud 45:467–499

    Article  Google Scholar 

  • Fialkowski M, Bitner A (2008) Universal rules for fragmentation of land by humans. Landscape Ecol 23:1013–1022

    Article  Google Scholar 

  • Fontaine CM, Rounsevell MDA (2009) An agent-based approach to model future residential pressure on a regional landscape. Landscape Ecol 24:1237–1254

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sensing Environ 80:185–201

    Article  Google Scholar 

  • Fortin MJ, Boots B, Csillag F, Remmel TK (2003) On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos 102:203–212

    Article  Google Scholar 

  • Fox A, Williams M, Richardson AD, Cameron D, Gove JH, Quaife T, Ricciuto D, Reichstein M, Tomelleri E, Trudinger CM, Van Wijk MT (2009) The REFLEX project: comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agric For Meteorol 149:1597–1615

    Article  Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  Google Scholar 

  • Gleick PH (2003) Water use. Annu Rev Environ Resour 28:275–314

    Article  Google Scholar 

  • Grimm N, Grove JM, Pickett STA, Redman CL (2000) Integrated approaches to long-term studies of urban ecological systems. Bioscience 50:571–584

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008a) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC (2008b) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272

    Article  Google Scholar 

  • Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42:1593–1606

    Article  CAS  Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Hargis CD, Bissonette JA, David JL (1998) The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecol 13:167–186

    Article  Google Scholar 

  • Hepinstall JA, Alberti M, Marzluff JM (2008) Predicting land cover change and avian community responses in rapidly urbanizing environments. Landscape Ecol 23:1257–1276

    Article  Google Scholar 

  • Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sensing Environ 86:286–302

    Article  Google Scholar 

  • Hope D, Gries C, Zhu WX, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci U S A 100:8788–8792

    Article  CAS  PubMed  Google Scholar 

  • Jenerette GD, Larsen L (2006) A global perspective on changing sustainable urban water supplies. Glob Planet Change 50:202–211

    Article  Google Scholar 

  • Jenerette GD, Wu J (2001) Analysis and simulation of land-use change in the central Arizona-Phoenix region. Landscape Ecol 16:611–626

    Article  Google Scholar 

  • Jenerette GD, Wu J, Grimm NB, Hope D (2006) Points, patches, and regions: scaling soil biogeochemical patterns in an urbanizing ecosystem. Glob Chang Biol 12:1532–1544

    Article  Google Scholar 

  • Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecol 22:353–365

    Article  Google Scholar 

  • Jenerette GD, Scott RL, Barron-Gafford GA, Huxman TE (2009) Gross primary production variability associated with meteorology, physiology, leaf area, and water supply in contrasting woodland and grassland semiarid riparian ecosystems. J Geophys Res Biogeosci 114:G04010. doi:10.1029/2009JG001074

    Article  Google Scholar 

  • Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869

    Article  CAS  PubMed  Google Scholar 

  • Karl TR, Diaz HF, Kukla G (1988) Urbanization: its detection and effect in the United States climate record. J Clim 1:1099–1123

    Article  Google Scholar 

  • Kaye JP, Majumdar A, Gries C, Buyantuyev A, Grimm NB, Hope D, Jenerette GD, Zhu WX, Baker L (2008) Hierarchical Bayesian scaling of soil properties across urban, agricultural, and desert ecosystems. Ecol Appl 18:132–145

    Article  CAS  PubMed  Google Scholar 

  • Kuhn I, Klotz S (2006) Urbanization and homogenization—comparing the floras of urban and rural areas in Germany. Biol Conserv 127:292–300

    Article  Google Scholar 

  • Landis JD (1995) Imagining land-use futures: applying the California urban futures model. J Am Plan Assoc 61:438–457

    Article  Google Scholar 

  • Langford WT, Gergel SE, Dietterich TG, Cohen W (2006) Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9:474–488

    Article  Google Scholar 

  • Lepczyk CA, Hammer RB, Stewart SI, Radeloff VC (2007) Spatiotemporal dynamics of housing growth hotspots in the North Central US from 1940 to 2000. Landscape Ecol 22:939–952

    Article  Google Scholar 

  • Li HB, Wu JG (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399

    Article  Google Scholar 

  • Loram A, Tratalos J, Warren PH, Gaston KJ (2007) Urban domestic gardens (X): the extent & structure of the resource in five major cities. Landscape Ecol 22:601–615

    Article  Google Scholar 

  • Luck MA, Wu J (2001) A gradient analysis of the landscape pattern of urbanization in the Phoenix Metropolitan Area of USA. Landscape Ecol 17:327–339

    Article  Google Scholar 

  • Luck MA, Jenerette GD, Wu JG, Grimm NB (2001) The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4:782–796

    Article  Google Scholar 

  • Makse HA, Havlin S, Stanley HE (1995) Modeling urban-growth patterns. Nature 377:608–612

    Article  CAS  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Pages Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: www.umass.edu/landeco/research/fragstats/fragstats.html

  • McGranahan G, Satterthwaite D (2003) Urban centers: an assessment of sustainability. Annu Rev Environ Resour 28:243–274

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • Molina MJ, Molina LT (2004) Megacities and atmospheric pollution. J Air Waste Manage Assoc 54:644–680

    CAS  Google Scholar 

  • Nowak DJ, Rowntree RA, McPherson EG, Sisinni SM, Kerkmann ER, Stevens JC (1996) Measuring and analyzing urban tree cover. Landsc Urban Plan 36:49–57

    Article  Google Scholar 

  • O’Neill RV, Gardner RH, Turner MG (1992) A hierarchical neutral model for landscape analysis. Landscape Ecol 7:55–61

    Article  Google Scholar 

  • Pataki DE, Alig RJ, Fung AS, Golubiewski NE, Kennedy CA, McPherson EG, Nowak DJ, Pouyat RV, Lankao PR (2006) Urban ecosystems and the North American carbon cycle. Glob Chang Biol 12:2092–2102

    Article  Google Scholar 

  • Putnam RD (2000) Bowling alone: the collapse and revival of American community. Simon and Schuster, New York

    Google Scholar 

  • Pysek P, Chocholouskova Z, Pysek A, Jarosik V, Chytry M, Tichy L (2004) Trends in species diversity and composition of urban vegetation over three decades. J Veg Sci 15:781–788

    Google Scholar 

  • Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecol Appl 15:799–805

    Article  Google Scholar 

  • Riitters KH, Oneill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP, Jones KB, Jackson BL (1995) A factor-analysis of landscape pattern and structure metrics. Landscape Ecol 10:23–39

    Article  Google Scholar 

  • Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia 151:54–68

    Article  PubMed  Google Scholar 

  • Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–213

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Woodcock CE (2008) Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud 45:659–692

    Article  Google Scholar 

  • Seto KC, Fragkias M (2005) Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape Ecol 20:871–888

    Article  Google Scholar 

  • Shen WJ, Jenerette GD, Wu JG, Gardner RH (2004) Evaluating empirical scaling relations of pattern metrics with simulated landscapes. Ecography 27:459–469

    Article  Google Scholar 

  • Shen WJ, Wu JG, Grimm NB, Hope D (2008) Effects of urbanization-induced environmental changes on ecosystem functioning in the phoenix metropolitan region, USA. Ecosystems 11:138–155

    Article  CAS  Google Scholar 

  • Syphard AD, Clarke KC, Franklin J (2005) Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecol Complex 2:185–203

    Article  Google Scholar 

  • Syphard AD, Clarke KC, Franklin J (2007) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecol 22:431–445

    Article  Google Scholar 

  • Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17:602–613

    Article  Google Scholar 

  • Theobald DM, Romme WH (2007) Expansion of the US wildland-urban interface. Landsc Urban Plan 83:340–354

    Article  Google Scholar 

  • Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197

    Article  Google Scholar 

  • Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera : Stenopelmatidae : Stenopelmatus). Mol Ecol 16:977–992

    Article  CAS  PubMed  Google Scholar 

  • Weng YC (2007) Spatiotemporal changes of landscape pattern in response to urbanization. Landsc Urban Plan 81:341–353

    Article  Google Scholar 

  • Wickham JD, Riitters KH (1995) Sensitivity of landscape metrics to pixel size. Int J Remote Sensing 16:3585–3594

    Article  Google Scholar 

  • Wiegand T, Jeltsch F, Hanski I, Grimm V (2003) Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100:209–222

    Article  Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138

    Article  Google Scholar 

  • Wu JG (2008) Making the case for landscape ecology: an effective approach to urban sustainability. Landscape J 27:41–50

    Article  Google Scholar 

  • Wu JG, Shen WJ, Sun WZ, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol 17:761–782

    Article  Google Scholar 

  • Xu T, White L, Hui DF, Luo YQ (2006) Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochem Cycles 20. doi: 10.1029/2005GB002468

  • Xu C, Liu MS, Zhang C, An SQ, Yu W, Chen JM (2007) The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landscape Ecol 22:925–937

    Article  Google Scholar 

  • Zhang YJ, He HS, Yang H (2008) The wildland-urban interface dynamics in the southeastern US from 1990 to 2000. Landsc Urban Plan 85:155–162

    Article  Google Scholar 

Download references

Acknowledgments

We thank the organizers and participants of the Second International Young Scientists’ Global Change Conference, System for Analysis, Research, and Training meeting held in Beijing, China where the ideas for this analysis were first generated. We greatly appreciate the work and openness by Shlomo (Solly) Angel who has made the urban land-cover data publically available. GDJ was supported by NSF grants 0814692 and 0919006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Darrel Jenerette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darrel Jenerette, G., Potere, D. Global analysis and simulation of land-use change associated with urbanization. Landscape Ecol 25, 657–670 (2010). https://doi.org/10.1007/s10980-010-9457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-010-9457-2

Keywords

Navigation