Skip to main content
Log in

Hybrid liposomes of DPPC/cholesterol/octyl-β-D-glucopyranoside with/without ibuprofen: thermal and morphological study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Investigation of new materials for biomedical applications has represented a relevant subject in the latest decade, enhancing versatile properties of lipids. It has been documented that the capabilities of lipid-based systems improve when they combine with polymers, proteins, and sugars. In this field, understanding the driving forces behind such hybrid systems is mandatory for biomedical applications. From this perspective, it is crucial to investigate the biophysical properties of this kind of material. Here, we investigate the biophysical properties of hybrid membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol, and octyl-β-D-glucopyranoside (OGP). Lipid/sugar materials could have potential properties to use as nanovesicles for drug delivery. We encapsulate ibuprofen in lipid/sugar vesicles and evaluate their thermodynamics, hydrodynamics, and morphological properties by differential scanning calorimetry, dynamic light scattering, and scanning electron microscopy. We found that OGP combined with cholesterol modifies thermodynamic parameters of membranes such as phase transition temperature, enthalpy change, and cooperativity. Lipid vesicles containing OGP at 6.0 mM loaded with ibuprofen demonstrated good stability after 3 months of storage. Furthermore, electronic microscopy revealed the presence of well-defined liposomes. We conclude that cholesterol and OGP can act synergistically in polar–nonpolar spaces of the DPPC bilayer, where the hydrophobic nature of ibuprofen leads to incorporation into this hybrid core, which implies changes in the fluidity and compactness of the membrane occurring at temperatures of biological relevance. This investigation provides crucial knowledge regarding the biophysical properties of thermo-responsive biohybrid vesicles potentially to use in nanomedicine, which could be of practical reference for designing innovative drug delivery systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LUV:

Large unilamellar vesicles

T m :

Phase transition temperature

C p :

Specific heat capacity at constant pressure

∆H m :

Molar enthalpy change

ΔT 1/2 :

The width of the transition at half peak height

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

OGP:

Octyl-β-D-glucopyranoside

Ibu:

Ibuprofen

Chol:

Cholesterol

DSC:

Differential scanning calorimetry

DLS:

Dynamic light scattering

SEM:

Scanning electron microscopy

References

  1. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48. https://doi.org/10.1016/j.addr.2012.09.037.

    Article  CAS  PubMed  Google Scholar 

  2. Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020;154–155:102–22. https://doi.org/10.1016/j.addr.2020.07.002.

    Article  CAS  PubMed  Google Scholar 

  3. Reichmuth AM, Oberli MA, Jeklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7(5):319–34. https://doi.org/10.4155/tde-2016-0006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng R, Liu L, Xiang Y, Lu Y, Deng L, Zhang H, Santos HA, Cui W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials. 2020;232: 119706. https://doi.org/10.1016/j.biomaterials.2019.119706.

    Article  CAS  PubMed  Google Scholar 

  5. Róg T, Girych M, Bunker A. Mechanistic understanding from molecular dynamics in pharmaceutical research 2: lipid membrane in drug design. Pharmaceuticals. 2021;14(10):1062. https://doi.org/10.3390/ph14101062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaber M, Medhat W, Hany M, Saher N, Fang JY, Elzoghby A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Control Release. 2017;254:75–91. https://doi.org/10.1016/j.jconrel.2017.03.392.

    Article  CAS  PubMed  Google Scholar 

  7. Meyer CE, Abram SL, Craciun I, Palivan CG. Biomolecule-polymer hybrid compartments: combining the best of both worlds. Phys Chem Chem Phys. 2020;22:11197–218. https://doi.org/10.1039/d0cp00693a.

    Article  CAS  PubMed  Google Scholar 

  8. Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B. 2021;9:4773–92. https://doi.org/10.1039/d1tb00126d.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine. 2022;17(12):913–34. https://doi.org/10.2217/nnm-2021-0389.

    Article  CAS  PubMed  Google Scholar 

  10. Pérez-Isidoro R, Ruiz-Suárez JC. Thermal behavior of a lipid-protein membrane model and the effects produced by anesthetics and neurotransmitters. BBA -Biomembranes. 2020;1862(2): 183099. https://doi.org/10.1016/j.bbamem.2019.183099.

    Article  CAS  PubMed  Google Scholar 

  11. Pérez-Isidoro R, Guevara-Pantoja FJ, Ventura-Hunter C, Guerrero-Sánchez C, Ruiz-Suárez JC, Schubert US, Saldívar-Guerra E. Fluidized or not fluidized? Biophysical characterization of biohybrid lipid/protein/polymer liposomes and their interaction with tetracaine. Biochim Biophys Acta - Gen Subj. 2023;1867(2): 130287. https://doi.org/10.1016/j.bbagen.2022.130287.

    Article  CAS  PubMed  Google Scholar 

  12. Balestri A, Lonetti B, Harrisson S, Farias-Mancilla B, Zhang J, Amenitsch H, Schubert US, Guerrero-Sanchez C, Montis C, Berti D. Thermo-responsive lipophilic NIPAM-based block copolymers as stabilizers for lipid-based cubic nanoparticles. Colloids Surfaces B Biointerfaces. 2022;220: 112884. https://doi.org/10.1016/j.colsurfb.2022.112884.

    Article  CAS  PubMed  Google Scholar 

  13. Wenk MR, Alt T, Seelig A, Seelig J. Octyl-β-D-glucopyranoside partitioning into lipid bilayers: Thermodynamics of binding and structural changes of the bilayer. Biophys J. 1997;72(4):1719–31. https://doi.org/10.1016/S0006-3495(97)78818-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krawczyk J. Temperature impact on the water-air interfacial activity of n-octyl and n-dodecyl-β-D-glucopyranosides. Colloids Surfaces A. 2017;533:61–7. https://doi.org/10.1016/j.colsurfa.2017.08.015.

    Article  CAS  Google Scholar 

  15. Wang Y, Wang S, Liu Z, Ma R, Sun Q, Liu A, Yang L, Gong J, Guo X. The formation of structure I hydrate in presence of n-octyl-β-D-glucopyranoside. Fluid Phase Equilib. 2022;556: 113373. https://doi.org/10.1016/j.fluid.2021.113373.

    Article  CAS  Google Scholar 

  16. Watanabe Y, Inoko Y. Reassembly of an integral oligomeric membrane protein OmpF porin in n-octyl β-D-glucopyranoside-lipids mixtures. Protein J. 2009;28:66–73. https://doi.org/10.1007/s10930-009-9165-4.

    Article  CAS  PubMed  Google Scholar 

  17. Krylova OO, Jahnke N, Keller S. Membrane solubilisation and reconstitution by octylglucoside: comparison of synthetic lipid and natural lipid extract by isothermal titration calorimetry. Biophys Chem. 2010;150(1–3):105–11. https://doi.org/10.1016/j.bpc.2010.03.013.

    Article  CAS  PubMed  Google Scholar 

  18. Dinesh M, Deepika S, HarishKumar R, Selvaraj CI, Roopan SM. Evaluation of Octyl-β-D-glucopyranoside (OGP) for cytotoxic, hemolytic, thrombolytic, and antibacterial activity. Appl Biochem Biotechnol. 2018;185:450–63. https://doi.org/10.1007/s12010-017-2661-7.

    Article  CAS  PubMed  Google Scholar 

  19. Zdarta A, Pacholak A, Smułek W, Zgoła-Grześkowiak A, Ferlin N, Bil A, Kovensky J, Grand E, Kaczorek E. Biological impact of octyl D-glucopyranoside based surfactants. Chemosphere. 2019;217:567–75. https://doi.org/10.1016/j.chemosphere.2018.11.025.

    Article  CAS  PubMed  Google Scholar 

  20. Hill K, LeHen-Ferrenbach C. Sugar-Based Surfactants for consumer products and technical applications. In: Ruiz CC, editor. Sugar-based surfactants: fundamentals and applications. 1st ed. Spain: CRC Press; 2008. p. 1–20. https://doi.org/10.1201/9781420051674.

    Chapter  Google Scholar 

  21. Medeiros M, Marcos X, Velasco-Medina AA, Perez-Casas S, Gracia-Fadrique J. Micellization and adsorption modeling of single and mixed nonionic surfactants. Colloids Surf A Physicochem Eng Asp. 2018;556:81–92. https://doi.org/10.1016/j.colsurfa.2018.08.005.

    Article  CAS  Google Scholar 

  22. Villegas-Pañeda X, Pérez-Casas S, Hernández-Baltazar E, Chávez-Castellanos AE. Study of interactions between octyl-β-D-glucopyranoside and the hydroxyethyl-cellulose biopolymer in aqueous solution. J Chem Thermodyn. 2014;79:69–75. https://doi.org/10.1016/j.jct.2014.06.026.

    Article  CAS  Google Scholar 

  23. Heerklotz H. Interactions of surfactants with lipid membranes. Q Rev Biophys. 2008;41(3–4):205–64. https://doi.org/10.1017/S0033583508004721.

    Article  CAS  PubMed  Google Scholar 

  24. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K. Niosome : a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374–80. https://doi.org/10.4103/0110-5558.76435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muzzalupo R, Tavano L, La Mesa C. Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications : evaluation of physico-chemical and biological properties. Int J Pharm. 2013;458(1):224–9. https://doi.org/10.1016/j.ijpharm.2013.09.011.

    Article  CAS  PubMed  Google Scholar 

  26. Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids. 2014;184:82–104. https://doi.org/10.1016/j.chemphyslip.2014.10.004.

    Article  CAS  PubMed  Google Scholar 

  27. Regen SL. Cholesterol’s condensing effect: unpacking a century-old mystery. JACS Au. 2022;2(1):84–91. https://doi.org/10.1021/jacsau.1c00493.

    Article  CAS  PubMed  Google Scholar 

  28. Pozzi D, Marchini C, Cardarelli F, Amenitsch H, Garulli C, Bifone A, Caracciolo G. Transfection efficiency boost of cholesterol-containing lipoplexes. BBA - Biomembr. 2012;1818(9):2335–43. https://doi.org/10.1016/j.bbamem.2012.05.017.

    Article  CAS  Google Scholar 

  29. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72. https://doi.org/10.1038/42408.

    Article  CAS  PubMed  Google Scholar 

  30. Regen SL. The origin of lipid rafts. Biochemistry. 2020;59(49):4617–21. https://doi.org/10.1021/acs.biochem.0c00851.

    Article  CAS  PubMed  Google Scholar 

  31. Jackson ML, Schmidt CF, Lichtenberg D, Litman BJ, Albert AD. Solubilization of phosphatidylcholine bilayers by octyl glucoside. Biochemistry. 1982;21(19):4576–82. https://doi.org/10.1021/bi00262a010.

    Article  CAS  PubMed  Google Scholar 

  32. Ollivon M, Eidelman O, Blumenthal R, Walter A. Micelle-vesicle transition of egg phosphatidylcholine and octylglucoside. Biochemistry. 1988;27(5):1695–703. https://doi.org/10.1021/bi00405a047.

    Article  CAS  PubMed  Google Scholar 

  33. Almog S, Litman BJ, Wimley W, Cohen J, Wachtel EJ, Barenholz Y, Ben-Shaul A, Lichtenberg D. States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry. 1990;29(19):4582–92. https://doi.org/10.1021/bi00471a012.

    Article  CAS  PubMed  Google Scholar 

  34. Eidelman O, Blumenthal R, Walter A. Composition of octyl glucoside-phosphatidylcholine mixed micelles. Biochemistry. 1988;27(8):2839–46. https://doi.org/10.1021/bi00408a027.

    Article  CAS  PubMed  Google Scholar 

  35. Rainsford KD. Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology. 2009;17:275–342. https://doi.org/10.1007/s10787-009-0016-x.

    Article  CAS  PubMed  Google Scholar 

  36. Bushra R, Aslam N. An overview of clinical pharmacology of ibuprofen. Oman Med J. 2010;25(3):155–61. https://doi.org/10.5001/omj.2010.49.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lanas A, Hunt R. Prevention of anti-inflammatory drug-induced gastrointestinal damage: benefits and risks of therapeutic strategies. Ann Med. 2006;38(6):415–28. https://doi.org/10.1080/07853890600925843.

    Article  CAS  PubMed  Google Scholar 

  38. Seifert SA, Bronstein AC, McGuire T. Massive ibuprofen ingestion with survival. J Toxicol - Clin Toxicol. 2000;38(1):55–7. https://doi.org/10.1081/CLT-100100917.

    Article  CAS  PubMed  Google Scholar 

  39. Hawkey CJ. COX-1 and COX-2 inhibitors. Best Pract Res Clin Gastroenterol. 2001;15(5):801–20. https://doi.org/10.1053/bega.2001.0236.

    Article  CAS  PubMed  Google Scholar 

  40. Aloi E, Rizzuti B, Guzzi R, Bartucci R. Association of ibuprofen at the polar / apolar interface of lipid membranes. Arch Biochem Biophys. 2018;654:77–84. https://doi.org/10.1016/j.abb.2018.07.013.

    Article  CAS  PubMed  Google Scholar 

  41. Lygre H, Moe G, Holmsen H. Interaction of ibuprofen with eukaryotic membrane lipids. Acta Odontol Scand. 2003;61:303–9. https://doi.org/10.1080/00016350310006555.

    Article  CAS  PubMed  Google Scholar 

  42. Heimburg T. Lipid melting. In: Heimburg T, editor. Thermal Biophysics of Membranes. 1st ed. Germany: Wiley; 2007. p. 75–97. https://doi.org/10.1002/9783527611591.ch6.

    Chapter  Google Scholar 

  43. Lewis RNAH, Mannock DA, McElhaney RN. Differential Scanning Calorimetry in the Study of Lipid Phase Transitions in Model and Biological Membranes. In: Dopico AM, editor. Methods in Membrane Lipids. Methods in Molecular Biology. New Jersey: Humana Press; 2007. p. 171–95. https://doi.org/10.1007/978-1-59745-519-0_12.

    Chapter  Google Scholar 

  44. Raudino A, Sarpietro MG, Pannuzzo M. Differential scanning calorimetry (DSC): theoretical fundamentals. In: Pignatello R, editor. Drug-Biomembrane Interaction Studies. The application of Calorimetric techniques. 1st ed. UK: Woodhead Publishing; 2013. p. 127–68. https://doi.org/10.1533/9781908818348.127.

    Chapter  Google Scholar 

  45. Sugár IP. Cooperativity and classification of phase transitions. Application to one- and two-component phospholipid membranes. J Phys Chem. 1987;91(1):95–101. https://doi.org/10.1021/j100285a023.

    Article  Google Scholar 

  46. Mason PC, Gaulin BD, Epand RM, Wignall GD, Lin JS. Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine. Phys Rev E. 1999;59:3361–7. https://doi.org/10.1103/PhysRevE.59.3361.

    Article  CAS  Google Scholar 

  47. Kreutzberger MA, Tejada E, Wang Y, Almeida PF. GUVs Melt like LUVs: the large heat capacity of MLVs is not due to large size or small curvature. Biophys J. 2015;108(11):2619–22. https://doi.org/10.1016/j.bpj.2015.04.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khajeh A, Modarress H. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. BBA - Biomembr. 2014;1838(10):2431–8. https://doi.org/10.1016/j.bbamem.2014.05.029.

    Article  CAS  Google Scholar 

  49. Bennett WFD, MacCallum JL, Tieleman DP. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. J Am Chem Soc. 2009;131(5):1972–8. https://doi.org/10.1021/ja808541r.

    Article  CAS  PubMed  Google Scholar 

  50. Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I. Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J. 2004;87(2):1076–91. https://doi.org/10.1529/biophysj.104.041368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Almeida PF, Carter FE, Kilgour KM, Raymonda MH, Tejada E. Heat capacity of DPPC/cholesterol mixtures: comparison of single bilayers with multibilayers and simulations. Langmuir. 2018;34(33):9798–809. https://doi.org/10.1021/acs.langmuir.8b01774.

    Article  CAS  PubMed  Google Scholar 

  52. Mannock DA, Lewis RNAH, McElhaney RN. Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophys J. 2006;91(1):3327–40. https://doi.org/10.1529/biophysj.106.084368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McMullen TPW, McElhaney RN. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta. 1995;1234(1):90–8. https://doi.org/10.1016/0005-2736(94)00266-r.

    Article  PubMed  Google Scholar 

  54. Alsop RJ, Armstrong CL, Maqbool A, Toppozini L, Dies H, Rheinstädter MC. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen. Soft Matter. 2015;11:4756–67. https://doi.org/10.1039/c5sm00597c.

    Article  CAS  PubMed  Google Scholar 

  55. Newville M, Stensitzki T, Allen DB, Rawlik M, Ingargiola A. LMFIT: Non-linear least-square minimization and curve-fitting for Python (1.0.2). Zenodo. 2021. https://doi.org/10.5281/zenodo.11813.

  56. Uria-Canseco E, Perez-Casas S. Spherical and tubular dimyristoylphosphatidylcholine liposomes: phase transition induced by pinocembrin. J Therm Anal Calorim. 2020;139:399–409. https://doi.org/10.1007/s10973-019-08416-0.

    Article  CAS  Google Scholar 

  57. Yonar D, Sünnetçioǧlu MM. Spectroscopic and calorimetric studies on trazodone hydrochloride- phosphatidylcholine liposome interactions in the presence and absence of cholesterol. BBA - Biomembr. 2014;1838:2369–79. https://doi.org/10.1016/j.bbamem.2014.06.009.

    Article  CAS  Google Scholar 

  58. Bibi S, Kaur R, Henriksen-Lacey M, Mcneil SE, Wilkhu J, Lattmann E, Christensen D, Mohammed AR, Perrie Y. Microscopy imaging of liposomes : from coverslips to environmental SEM. Int J Pharm. 2011;417(1–2):138–50. https://doi.org/10.1016/j.ijpharm.2010.12.021.

    Article  CAS  PubMed  Google Scholar 

  59. Ruozi B, Belletti D, Tombesi A, Tosi G, Bondioli L, Forni F, Vandelli MA. AFM, ESEM, TEM, and CLSM in liposomal characterization : a comparative study. Int J Nanomed. 2011;6:557–63. https://doi.org/10.2147/IJN.S14615.

    Article  CAS  Google Scholar 

  60. Hung WC, Lee MT, Chen FY, Huang HW. The condensing effect of cholesterol in lipid bilayers. Biophys J. 2007;92(11):3960–7. https://doi.org/10.1529/biophysj.106.099234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Javanainen M, Martinez-Seara H, Vattulainen I. Nanoscale membrane domain formation driven by cholesterol. Sci Rep. 2017;7(1143):1–10. https://doi.org/10.1038/s41598-017-01247-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RP-I thanks DGAPA-UNAM for a postdoctoral scholarship and acknowledges CONAHCYT—México for supporting in part the writing of this work via a postdoctoral fellowship, project number 3969865. This work was supported by FQ-UNAM (PAIP 5000-9020). We thank Rafael Ivan Puente Lee from USAII-UNAM for his competent assistance in SEM and Dr. Ismael Bustos Jaimes for the use of his Zetasizer equipment.

Author information

Authors and Affiliations

Authors

Contributions

RP-I, SP-C, and AJD-S helped in conceptualization; RP-I and AJD-S helped in methodology and data analysis; RP-I and AJD-S helped in original draft preparation; RP-I, SP-C, and AJD-S contributed to review and editing; and RP-I, SP-C, and AJD-S worked in resources. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. Pérez-Isidoro.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Salazar, A.J., Pérez-Casas, S. & Pérez-Isidoro, R. Hybrid liposomes of DPPC/cholesterol/octyl-β-D-glucopyranoside with/without ibuprofen: thermal and morphological study. J Therm Anal Calorim 148, 13983–13994 (2023). https://doi.org/10.1007/s10973-023-12704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12704-1

Keywords

Navigation