Skip to main content
Log in

Effects of flow direction in mini U-channel cold plates on thermal performance of a prismatic LiMn2O4 battery

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For addressing the issue about cooling a prismatic LiMn2O4 battery, two mini U-channel cold plates are used to clinging to the front and back surface of the prismatic battery, respectively. The maximum temperature and temperature distribution of the battery under different flow directions (Cooling plan A and cooling plan B) are numerically investigated and analyzed. It is found that the maximum temperature of battery is reduced to about 311.8 K under the two cooling plans at the inlet velocity of 0.01 m s−1 and the discharge rate of 1 C, making the battery in a suitable temperature range. Furthermore, the maximum temperature of battery under cooling plan A (Same flow direction) and B (Opposite flow direction) are basically the same, while the temperature distribution of battery under the cooling plan B is more uniform than that under the cooling plan A. Results suggest that the cooling plan B is more applicable for cooling a prismatic LiMn2O4 battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c p,b :

Specific heat capacity of battery material, J kg−1 K−1

c p,c :

Specific heat capacity of coolant, J kg−1 K−1

E oc :

Open-circuit voltage, V

h a :

Convective heat transfer coefficient of air, W m−2 K−1

I :

Discharge current, A

i :

Current per unit volume, A m−3

k b :

Thermal conductivity of battery, W m−1 K−1

k c :

Thermal conductivity of coolant, W m−1 K−1

p :

Coolant pressure, Pa

Q r :

Reaction heat, W

Q p :

Polarization heat, W

Q j :

Joule heat, W

R p :

Polarization resistance, Ω

R t :

Total resistance, Ω

R e :

Internal resistance, Ω

q g :

Heat generation rate per unit volume, W m−3

T a :

Ambient temperature, K

T b :

Battery temperature, K

T c :

Coolant temperature, K

t :

Time, s

\(\overrightarrow {v}\) :

Coolant velocity, m s−1

μ :

Dynamic viscosity of coolant, kg m−1 s−1

ρ b :

Battery density, kg m−3

ρ c :

Coolant density, kg m−3

References

  1. Zuo W, Wang Z, Jiaqiang E, Li Q, Cheng Q, Wu Y, Zhou K. Numerical investigations on the performance of a hydrogen-fueled micro planar combustor with tube outlet for thermophotovoltaic applications. Energy. 2023;263:125957.

    Article  CAS  Google Scholar 

  2. Zuo W, Li D, Jiaqiang E, Xia Y, Li Q, Quan Y, Zhang G. Parametric study of cavity on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications. Energy. 2023;263:126028.

    Article  CAS  Google Scholar 

  3. Zuo W, Chen Z, Jiaqiang E, Li Q, Zhang G, Huang Y. Effects of structure parameters of tube outlet on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications. Energy. 2023;266:126434.

    Article  CAS  Google Scholar 

  4. Olabi AG, Onumaegbu C, Wilberforce T, Ramadan M, Abdelkaareem MA, Al-Alami AH. Critical review of energy storage systems. Energy. 2021;214:118987.

    Article  CAS  Google Scholar 

  5. Olabi AG, Wilberforce T, Abdelkareem MA. Fuel cell application in the automotive industry and future perspective. Energy. 2021;214:118955.

    Article  Google Scholar 

  6. Siddique AR, Mahmud S, VanHeyst B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources. 2018;401:224–37.

    Article  CAS  Google Scholar 

  7. Rao ZH, Wang SF. A review of power battery thermal energy management. Renew Sustain Energy Rev. 2011;15(9):4554–71.

    Article  CAS  Google Scholar 

  8. Wang QS, Mao BB, Stoliarov SI, Sun JH. A review of lithium ion battery mechanisms and fire prevention strategies. Prog Energy Combust Sci. 2019;73:95–131.

    Article  Google Scholar 

  9. Liu HQ, Wei ZB, He WD, Zhao JY. Thermal issues about batteries and recent progress in battery thermal management systems: a review. Energy Convers Manage. 2017;150:304–30.

    Article  CAS  Google Scholar 

  10. Liang J, Gan Y, Li Y, Tan M, Wang J. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures. Energy. 2019;189:116233.

    Article  CAS  Google Scholar 

  11. Liang J, Gan Y, Li Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers Manage. 2018;155:1–9.

    Article  Google Scholar 

  12. Xia GD, Cao L, Bi GL. A review on battery thermal management in electric vehicle application. J Power Sources. 2017;367:90–105.

    Article  CAS  Google Scholar 

  13. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158(3):R1–25.

    Article  CAS  Google Scholar 

  14. Choudhari VG, Dhoble AS, Sathe TM. A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. J Energy Storage. 2020;32:101729.

    Article  Google Scholar 

  15. Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng. 2019;149:192–212.

    Article  Google Scholar 

  16. Peng XB, Ma C, Garg A, Bao NS, Liao XP. Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells. Appl Therm Eng. 2019;153:596–603.

    Article  CAS  Google Scholar 

  17. Wu WX, Wang SF, Wu W, Chen K, Hong SH, Lai YX. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manage. 2019;182:262–81.

    Article  Google Scholar 

  18. Ianniciello L, Biwole PH, Achard P. Electric vehicles batteries thermal management systems employing phase change materials. J Power Sources. 2018;378:383–403.

    Article  CAS  Google Scholar 

  19. Ye YH, Saw LH, Shi YX, Tay AAO. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl Therm Eng. 2015;86:281–91.

    Article  CAS  Google Scholar 

  20. Putra N, Ariantara B, Pamungkas RA. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Appl Therm Eng. 2016;99:784–9.

    Article  Google Scholar 

  21. Zou HM, Wang W, Zhang GY, Qin F, Tian CQ, Yan YY. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. Energy Convers Manage. 2016;118:88–95.

    Article  Google Scholar 

  22. Shah K, McKee C, Chalise D, Jain A. Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes. Energy. 2016;113:852–60.

    Article  CAS  Google Scholar 

  23. Fan LW, Khodadadi JM, Pesaran AA. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J Power Sources. 2013;238:301–12.

    Article  CAS  Google Scholar 

  24. Jq E, Yue M, Chen JW, Zhu H, Deng YW, Zhu Y, Zhang F, Wen M, Zhang B, Kang SY. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Appl Therm Eng. 2018;144:231–41.

    Article  Google Scholar 

  25. Panchal S, Akhoundzadeh MH, Raahemifar K, Fowler M, Fraser R. Heat and mass transfer modeling and investigation of multiple LiFeO4/graphite batteries in a pack at low C-rates with water cooling. Int J Heat Mass Transf. 2019;135:368–77.

    Article  CAS  Google Scholar 

  26. Karimi D, Behi H, Hosen MS, Jaguemont J, Berecibar M, Van Mierlo J. A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors. Appl Therm Eng. 2021;185:116449.

    Article  CAS  Google Scholar 

  27. Tang AK, Li JM, Lou LS, Shan CX, Yuan XZ. Optimization design and numerical study on water cooling structure for power lithium battery pack. Appl Therm Eng. 2019;159:113760.

    Article  Google Scholar 

  28. Huo YT, Rao ZH, Liu XJ, Zhao JT. Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers Manage. 2015;89:387–95.

    Article  Google Scholar 

  29. Siruvuri SDVSSV, Budarapu PR. Studies on thermal management of lithium-ion battery pack using water as the cooling fluid. J Energy Storage. 2020;29:101377.

    Article  Google Scholar 

  30. Qian Z, Li YM, Rao ZH. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manage. 2016;126:622–31.

    Article  CAS  Google Scholar 

  31. Chen SQ, Peng XB, Bao NS, Grag A. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module. Appl Therm Eng. 2019;156:324–39.

    Article  Google Scholar 

  32. Zhao JT, Rao ZH, Li YM. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-on power battery. Energy Convers Manage. 2015;103:157–65.

    Article  CAS  Google Scholar 

  33. Deng T, Ran Y, Yin YL, Chen X, Liu P. Multi-objective optimization design of double-layered reverting cooling plate for lithium-ion batteries. Int J Heat and Mass Transf. 2019;143:118580.

    Article  Google Scholar 

  34. Jq E, Xu SJ, Deng YW, Zhu H, Zuo W, Wang HC, Chen JM, Peng QG, Zhang ZQ. Investigation on thermal performance and pressure loss of the fluid cold-plate used in thermal management system of the battery pack. Appl Therm Eng. 2018;145:552–68.

    Article  Google Scholar 

  35. Zhang Y, Zuo W, Jiaqiang E, Li J, Li Q, Sun K, Zhou K, Zhang G. Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery. Energy. 2022;248:123637.

    Article  CAS  Google Scholar 

  36. Zuo W, Zhang Y, Jiaqiang E, Li J, Li Q, Zhang G. Performance comparison between single S-channel and double S-channel cold plate for thermal management of a prismatic LiFePO4 battery. Renew Energy. 2022;192:46–57.

    Article  CAS  Google Scholar 

  37. Rao ZH, Wang SF, Zhang GQ. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery. Energy Convers Manage. 2011;52(12):3408–14.

    Article  CAS  Google Scholar 

  38. Zhao JT, Wu CH, Rao ZH. Investigation on the cooling and temperature uniformity of power battery pack based on gradient phase change materials embedded thin heat sinks. Appl Therm Eng. 2020;174:115304.

    Article  Google Scholar 

  39. Yang W, Zhou F, Zhou HB, Wang QZ, Kong JZ. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling. Appl Therm Eng. 2020;175:115331.

    Article  CAS  Google Scholar 

  40. Lei SR, Shi Y, Chen GY. Heat-pipe based spray-cooling thermal management system for lithiun-ion battery: Experimental study and optimization. Int J Heat Mass Transf. 2020;163:120494.

    Article  CAS  Google Scholar 

  41. Zuo W, Zhang Y, Jiaqiang E, Huang Y, Li Q, Zhou K, Zhang G. Effects of multi-factors on performance of an improved multi-channel cold plate for thermal management of a prismatic LiFePO4 battery. Energy. 2022;261:125384.

    Article  CAS  Google Scholar 

  42. Li J, Zuo W, Jiaqiang E, Zhang Y, Li Q, Sun K, Zhou K, Zhang G. Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II. Energy. 2022;242:123039.

    Article  CAS  Google Scholar 

  43. Smith K, Wang CY. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J Power Sources. 2006;160(1):662–73.

    Article  CAS  Google Scholar 

  44. Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J Power Sources. 2006;158(1):535–42.

    Article  CAS  Google Scholar 

  45. Lan C, Xu J, Qiao Y, Ma Y. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl Therm Eng. 2016;101:284–92.

    Article  CAS  Google Scholar 

  46. Pang X, Huo Y, Fang H, Rao Z. Analysis of temperature uniformity of electric vehicle battery system with swirling flow strengthened heat transfer. Appl Therm Eng. 2021;193:116995.

    Article  Google Scholar 

  47. Monika K, Chakraborty C, Roy S, Dinda S, Singh SA, Datta SP. Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates. Int J Heat Mass Transf. 2021;164:120568.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Wuhan University of Science and Technology (No. 1010010) and Wuhan Yellow Crane Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingqing Li.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, W., Li, J., Zhang, Y. et al. Effects of flow direction in mini U-channel cold plates on thermal performance of a prismatic LiMn2O4 battery. J Therm Anal Calorim 148, 3689–3699 (2023). https://doi.org/10.1007/s10973-022-11935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11935-y

Keywords

Navigation