Skip to main content
Log in

Thermal characteristics of highly magnetic core/shell nanoparticles for hyperthermia: Theoretical and experimental analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal characteristics of ferrite nanoparticles are widely studied for magnetic nanoparticle hyperthermia, while alternative materials for the melioration of heating efficiency are being explored. We present the theoretical and experimental evaluation of (Fe, FeCo) core and iron oxide shell-based nanoparticles as potential materials for improved heating efficiency. The numerical computations reveal enhanced effective specific absorption rates up to 47 and 55 nH m2 kg−1 for Fe and FeCo core–shell particles (CSPs), greater than spinel ferrites, for varying shell thicknesses in the range of 2–10 nm. The experimental evaluation of the heating characteristics for the average particle sizes of 46 (Fe) and 18 (FeCo) nm has been probed using infrared thermography. The effective magnetic anisotropy constant determined from ferromagnetic resonance is 85 kJ m−3 for the FeCo CSPs that are larger than Fe CSPs and ferrites (15–23 kJ m−3). The temperature rise of 8 K observed for the FeCo CSPs is attributed to the partial compliance with the linear response theory suggesting it as a promising candidate for magnetic nanoparticle hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lima E Jr, Torres TE, Rossi LM, Rechenberg HR, Berquo TS, Ibarra A, Marquina C, Ibarra MR, Goya GF. Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles. J Nanoparticle Res. 2013. https://doi.org/10.1007/s11051-013-1654-x.

    Article  Google Scholar 

  2. Lima E Jr, De Biasi E, Zysler RD, Vasquez Mansilla M, Mojica-Pisciotti ML, Torres TE, Calatayud MP, Marquina C, Ricardo Ibarra M, Goya GF. Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia. J Nanoparticle Res. 2014. https://doi.org/10.1007/s11051-014-2791-6.

    Article  Google Scholar 

  3. Anandhi JS, Joseyphus RJ. Insights on the heating characteristics of Mn and Co ferrites. Int J Thermophys. 2021. https://doi.org/10.1007/s10765-020-02782-w.

    Article  Google Scholar 

  4. Suleman M, Riaz S, Jalil R. A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10080-8.

    Article  Google Scholar 

  5. Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, McHenry ME. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys. 2008. https://doi.org/10.1063/1.2830975.

    Article  Google Scholar 

  6. Vasilakaki M, Binns C, Trohidou KN. Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: a Monte Carlo study of shape and size effects. Nanoscale. 2015. https://doi.org/10.1039/C4NR07576E.

    Article  Google Scholar 

  7. Nemati Z, Alonso J, Khurshid H, Phan MH, Srikanth H. Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia? RSC Adv. 2016. https://doi.org/10.1039/x0xx00000x.

    Article  Google Scholar 

  8. Fabris F, Lohr J, Lima E Jr, de Almeida AA, Troiani HE, Rodríguez LM, Vásquez Mansilla M, Aguirre MH, Goya GF, Rinaldi D, Ghirri A, Peddis D, Fiorani D, Zysler RD, De Biasi E, Winkler EL. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1−xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia. Nanotechnology. 2020. https://doi.org/10.1088/1361-6528/abc386.

    Article  Google Scholar 

  9. Simeonidis K, Martinez-Boubeta C, Serantes D, Ruta S, Chubykalo-Fesenko O, Chantrell R, Oró-Solé J, Balcells L, Kamzin AS, Nazipov RA, Makridis A, Angelakeris M. Controlling magnetization reversal and hyperthermia efficiency in core-shell iron-iron oxide magnetic nanoparticles by tuning the interphase coupling. ACS Appl Nano Mater. 2020. https://doi.org/10.1021/acsanm.0c00568.

    Article  Google Scholar 

  10. Dutz S, Hergt R. Magnetic particle hyperthermia-a promising tumour therapy? Nanotechnology. 2014. https://doi.org/10.1088/0957-4484/25/45/452001.

    Article  Google Scholar 

  11. Lacroix LM, Frey Huls N, Ho D, Sun X, Cheng K, Sun S. Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett. 2011. https://doi.org/10.1021/nl200110t.

    Article  Google Scholar 

  12. Anandhi JS, Jacob GA, Joseyphus RJ. Heating characteristics of dextran modified magnetite nanoparticles by infrared thermography. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/aae87d.

    Article  Google Scholar 

  13. Famiani S, Lagrow AP, Besenhard MO, Maenosono S, Thanh NTK. Synthesis of fine-tuning highly magnetic Fe@FexOy Nanoparticles through continuous Injection and a study of magnetic hyperthermia. Chem Mater. 2018. https://doi.org/10.1021/acs.chemmater.8b04056.

    Article  Google Scholar 

  14. Lacroix L-M, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B. Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses. J Appl Phys. 2009. https://doi.org/10.1063/1.3068195.

    Article  Google Scholar 

  15. Marbaix J, Mille N, Lacroix L-M, Asensio JM, Fazzini P-F, Soulantica K, Carrey J, Chaudret B. Tuning the composition of FeCo nanoparticle heating agents for magnetically induced catalysis. ACS Appl Nano Mater. 2020. https://doi.org/10.1021/acsanm.0c00444.

    Article  Google Scholar 

  16. Anandhi JS, Jacob GA, Joseyphus RJ. Factors affecting the heating efficiency of Mn-doped Fe3O4 nanoparticles. J Magn Magn Mater. 2020. https://doi.org/10.1016/j.jmmm.2020.166992.

    Article  Google Scholar 

  17. Anandhi JS, Arun T, Joseyphus RJ. Role of magnetic anisotropy on the heating mechanism of Co-doped Fe3O4 nanoparticles. Phys B Condens Matter. 2020. https://doi.org/10.1016/j.physb.2020.412429.

    Article  Google Scholar 

  18. Lahiri BB, Ranoo S, Philip J. Infrared thermography based magnetic hyperthermia study in Fe3O4 based magnetic fluids. Infrared Phys Technol. 2016. https://doi.org/10.1016/j.infrared.2016.08.002.

    Article  Google Scholar 

  19. Francis F, Anandhi JS, Jacob GA, Sastikumar D, Joseyphus RJ. Temperature sensitivity of magnetic nanoparticle hyperthermia using IR thermography. Int J Nanosci. 2021. https://doi.org/10.1142/S0219581X21500022.

    Article  Google Scholar 

  20. Rezvanian A, Beigzadeh B, Davaei Markazi AH, Halabian M. Feedback control of temperature in specific geometry of porous media: application to hyperthermia. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09597-9.

    Article  Google Scholar 

  21. Joseyphus RJ, Shinoda K, Kodama D, Jeyadevan B. Size controlled Fe nanoparticles through polyol process and their magnetic properties. Mater Chem Phys. 2010. https://doi.org/10.1016/j.matchemphys.2010.05.001.

    Article  Google Scholar 

  22. Sivaranjani KS, Antilen Jacob G, Justin JR. Coercivity and exchange bias in size reduced iron obtained through chemical reduction. J Magn Magn Mater. 2020. https://doi.org/10.1016/j.jmmm.2020.167228.

    Article  Google Scholar 

  23. Jacob GA, Joseyphus RJ. Magnetic properties of FeCo-iron oxide core–shell nanoparticles investigated through first order reversal studies. Appl Phys A Mater Sci Process. 2021. https://doi.org/10.1007/s00339-020-04176-z.

    Article  Google Scholar 

  24. Hosono T, Takahashi H, Fujita A, Joseyphus RJ, Tohji K, Jeyadevan B. Synthesis of magnetite nanoparticles for AC magnetic heating. J Magn Magn Mater. 2009. https://doi.org/10.1016/j.jmmm.2009.04.061.

    Article  Google Scholar 

  25. Coey JMD. Magnetism and magnetic materials. Cambridge, MA: Cambridge University Press; 2001.

    Book  Google Scholar 

  26. Bihlmayer G. Density-functional theory of magnetism. Handb Magn Adv Magn Mater. 2007. https://doi.org/10.1002/9780470022184.hmm101.

    Article  Google Scholar 

  27. Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int J Hyperth. 2013. https://doi.org/10.3109/02656736.2013.836758.

    Article  Google Scholar 

  28. Golovin YI, Klyachko NL, Majouga AG, Sokolsky M, Kabanov AV. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine. J Nanoparticle Res. 2017. https://doi.org/10.1007/s11051-017-3746-5.

    Article  Google Scholar 

  29. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002. https://doi.org/10.1016/s0304-8853(02)00706-0.

    Article  Google Scholar 

  30. Trohidou KN, Vasilakaki M, Del Bianco L, Fiorani D, Testa AM. Exchange bias in a magnetic ordered/disordered nanoparticle system: a Monte Carlo simulation study. J Magn Magn Mater. 2007. https://doi.org/10.1016/j.jmmm.2007.02.035.

    Article  Google Scholar 

  31. Yang HX, Chshiev M, Dieny B, Lee JH, Manchon A, Shin KH. First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces. Phys Rev B Condens Matter Mater Phys. 2011. https://doi.org/10.1103/PhysRevB.84.054401.

    Article  Google Scholar 

  32. Landi GT. Role of dipolar interaction in magnetic hyperthermia. Phys Rev B Condens Matter Mater Phys. 2014. https://doi.org/10.1103/PhysRevB.89.014403.

    Article  Google Scholar 

  33. Behbahani R, Plumer ML, Saika-Voivod I. Multiscale modelling of magnetostatic effects on magnetic nanoparticles with application to hyperthermia. J Phys Condens Matter. 2021. https://doi.org/10.1088/1361-648X/abe649.

    Article  Google Scholar 

  34. Cullity BD, Graham CD. Introduction to magnetic materials. Hoboken, NJ, USA: John Wiley & Sons Inc; 2008.

    Book  Google Scholar 

  35. Rajesh P, Greneche JM, Jacob GA, Arun T, Joseyphus RJ. Exchange bias in chemically reduced FeCo alloy nanostructures. Phys Status Solidi Appl Mater Sci. 2019. https://doi.org/10.1002/pssa.201900051.

    Article  Google Scholar 

  36. Köseoǧlu Y. Effect of surfactant coating on magnetic properties of Fe3O4 nanoparticles: ESR study. J Magn Magn Mater. 2006. https://doi.org/10.1016/j.jmmm.2005.10.112.

    Article  Google Scholar 

  37. Kaur M, McCloy JS, Jiang W, Yao Q, Qiang Y. Size dependence of inter- and intracluster interactions in core-shell iron-iron oxide nanoclusters. J Phys Chem C. 2012. https://doi.org/10.1021/jp301453w.

    Article  Google Scholar 

  38. Kodama RH. Magnetic nanoparticles. J Magn Magn Mater. 1999. https://doi.org/10.1016/s0304-8853(99)00347-9.

    Article  Google Scholar 

  39. Zehani K, Bez R, Boutahar A, Hlil EK, Lassri H, Moscovici J, Mliki N, Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticles. J Alloys Compd. 2014. https://doi.org/10.1016/j.jallcom.2013.11.208.

    Article  Google Scholar 

  40. Misra SK. Multifrequency electron paramagnetic resonance. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA; 2011.

    Book  Google Scholar 

  41. Lindner J, Hassel C, Trunova AV, Römer FM, Stienen S, Barsukov I. Magnetism of single-crystalline Fe nanostructures. J Nanosci Nanotechnol. 2010. https://doi.org/10.1166/jnn.2010.2597.

    Article  Google Scholar 

  42. Li Z, Kawashita M, Araki N, Mitsumori M, Hiraoka M, Doi M. Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer. Mater Sci Eng C. 2010. https://doi.org/10.1016/j.msec.2010.04.016.

    Article  Google Scholar 

  43. Phong PT, Nam PH, Manh DH, Lee IJ. Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy. J Magn Magn Mater. 2017. https://doi.org/10.1016/j.jmmm.2017.03.001.

    Article  Google Scholar 

  44. Chandekar KV, Kant KM. Relaxation phenomenon and relaxivity of cetrimonium bromide (CTAB) coated CoFe2O4 nanoplatelets. Phys B Condens Matter. 2018. https://doi.org/10.1016/j.physb.2018.07.010.

    Article  Google Scholar 

  45. Marin CN, Malaescu I, Fannin PC. Theoretical evaluation of the heating rate of ferrofluids. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-014-4224-2.

    Article  Google Scholar 

  46. Hilger I, Hergt R, Kaiser WA. Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc Nanobiotechnol. 2005. https://doi.org/10.1049/ip-nbt:20055018.

    Article  Google Scholar 

  47. Hergt R, Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007. https://doi.org/10.1016/j.jmmm.2006.10.1156.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Science and Technology, Government of India for the experimental facilities and the SERB project, CRG/2018/000939. The TEM measurements by Dr. B. Jeyadevan, the University of Shiga Prefecture, Japan and ESR characterization by SAIF, IIT Madras are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J. Shebha Anandhi contributed to methodology, data curation, formal analysis and investigation, resources, software, validation, visualization, writing—original draft preparation, writing—review and editing; G. Antilen Jacob contributed to resources; D. Sastikumar contributed to resources; R. Justin Joseyphus contributed to conceptualization, methodology, writing—review and editing, supervision.

Corresponding author

Correspondence to R. Justin Joseyphus.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 76 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shebha Anandhi, J., Antilen Jacob, G., Sastikumar, D. et al. Thermal characteristics of highly magnetic core/shell nanoparticles for hyperthermia: Theoretical and experimental analysis. J Therm Anal Calorim 147, 14133–14142 (2022). https://doi.org/10.1007/s10973-022-11718-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11718-5

Keywords

Navigation