Skip to main content
Log in

Effects of temperature and humidity ratio on the performance of desiccant dehumidification system under low-temperature regeneration

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The desiccant dehumidification system can separate the latent heat and sensible heat in the air-conditioning system and achieve energy savings by removing latent heat. Industrial waste heat and renewable energy could be utilized in desiccant dehumidification systems, where the desorption process can be performed below 70 °C. The vapor pressure and temperature of the regenerating air dictate the desorption process corresponding to the isotherm properties. This study has focused on the effects of various temperatures and humidity ratios of regeneration air on the performance of a desiccant dehumidifier using a polymer as an adsorbent. Experiments were performed using the regeneration air with the humidity ratios of 0.005 kg kg−1, 0.010 kg kg−1, 0.015 kg kg−1, and 0.020 kg kg−1, while the air temperatures were varied from 40 °C to 70 °C. The evaluation of this study employs the adsorption/desorption amount, average moisture removal capacity, and latent energy ratio (LER) of the regeneration process as key performance indexes. At the regeneration temperature of 68 °C, the peak desorption amount at the humidity ratio of 0.005 kg kg−1 and 0.010 kg kg−1 both reached 0.011 kg kg−1. The results indicated that the higher desorption temperature led to a higher desorption amount. Besides, with the increased desorption temperature, the average moisture removal capacity increases. In contrast, the high humidity ratio of regeneration air resulted in a weak dehumidification ability. Lower regeneration temperature was difficult to apply to regenerate the polymer-based desiccant under a high-humidity-ratio atmosphere. To attain a high LER, a lower humidity ratio of dry air and regeneration temperature was preferred. The regeneration air with a humidity ratio of 0.020 kg kg−1 is not suitable to apply in the dehumidification system in the temperature range of 40–70 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dincer I, Rosen MA. Energy, environment and sustainable development. Appl Energy. 1999;64(1–4):427–40. https://doi.org/10.1016/S0306-2619(99)00111-7.

    Article  CAS  Google Scholar 

  2. Mahmood MH, Sultan M, Miyazaki T, Koyama S. Desiccant air-conditioning system for storage of fruits and vegetables: Pakistan preview. Evergreen. 2016;3(1):12–7. https://doi.org/10.5109/1657381.

    Article  CAS  Google Scholar 

  3. Omer AM. Energy, environment and sustainable development. Renew Sustain Energy Rev. 2008;12(9):2265–300. https://doi.org/10.1016/j.rser.2007.05.001.

    Article  CAS  Google Scholar 

  4. Goetzler W, Guernsey M, Young J, Fujrman J, Abdelaziz A. The future of air conditioning for buildings. United States: N. p., 2016. Web. https://doi.org/10.2172/1420235.

  5. Lizana J, Friedrich D, Renaldi R, Chacartegui R. Energy flexible building through smart demand-side management and latent heat storage. Appl Energy. 2018;230:471–85. https://doi.org/10.1016/j.apenergy.2018.08.065.

    Article  Google Scholar 

  6. Kim M. Fundamental process and system design issues in CO2 vapor compression systems. Prog Energy Combust Sci. 2004;30(2):119–74. https://doi.org/10.1016/j.pecs.2003.09.002.

    Article  CAS  Google Scholar 

  7. Daou K, Wang R, Xia Z. Desiccant cooling air conditioning: a review. Renew Sustain Energy Rev. 2006;10(2):55–77. https://doi.org/10.1016/j.rser.2004.09.010.

    Article  CAS  Google Scholar 

  8. Sultan M, El-Sharkawy II, Miyazaki T, Saha BB, Koyama S. An overview of solid desiccant dehumidification and air conditioning systems. Renew Sustain Energy Rev. 2015;46:16–29. https://doi.org/10.1016/j.rser.2015.02.038.

    Article  Google Scholar 

  9. Tu YD, Wang RZ, Ge TS, Zheng X. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers. Sci Rep. 2017;7(1):40437. https://doi.org/10.1038/srep40437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heidarinejad G, Heidarinejad M, Delfani S, Esmaeelian J. Feasibility of using various kinds of cooling systems in a multi-climates country. Energy Build. 2008;40(10):1946–53. https://doi.org/10.1016/j.enbuild.2008.04.016.

    Article  Google Scholar 

  11. Enteria N, et al. Application of desiccant heating, ventilating, and air-conditioning system in different climatic conditions of east Asia using silica gel (SiO2) and titanium dioxide (TiO2) materials. In: Enteria N, Awbi H, Yoshino H, editors., et al., Desiccant heating, ventilating, and air-conditioning systems. Singapore: Springer; 2017.

    Chapter  Google Scholar 

  12. Jani DB, Mishra M, Sahoo PK. Investigations on effect of operational conditions on performance of solid desiccant based hybrid cooling system in hot and humid climate. Therm Sci Eng Prog. 2018;7:76–86. https://doi.org/10.1016/j.tsep.2018.05.005.

    Article  Google Scholar 

  13. Sultan M, Miyazaki T, Koyama S, Khan ZM. Performance evaluation of hydrophilic organic polymer sorbents for desiccant air-conditioning applications. Adsorpt Sci Technol. 2018;36(1–2):311–26. https://doi.org/10.1177/0263617417692338.

    Article  CAS  Google Scholar 

  14. Halliday SP, Beggs CB, Sleigh PA. The use of solar desiccant cooling in the UK: a feasibility study. Appl Therm Eng. 2002;22(12):1327–38. https://doi.org/10.1016/S1359-4311(02)00052-2.

    Article  CAS  Google Scholar 

  15. Baniyounes AM, Rasul MG, Khan MMK. Experimental assessment of a solar desiccant cooling system for an institutional building in subtropical Queensland, Australia. Energy Build. 2013;62:78–86. https://doi.org/10.1016/j.enbuild.2013.02.062.

    Article  Google Scholar 

  16. Patnaik S, Lenz TG, Löf GOG. Performance studies for an experimental solar open-cycle liquid desiccant air dehumidification system. Sol Energy. 1990;44(3):123–35. https://doi.org/10.1016/0038-092X(90)90074-M.

    Article  CAS  Google Scholar 

  17. Myat A, Thu K, Choon NK. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation. Appl Therm Eng. 2012;39:70–7. https://doi.org/10.1016/j.applthermaleng.2012.01.041.

    Article  Google Scholar 

  18. Misha S, Mat S, Ruslan MH, Sopian K. Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renew Sustain Energy Rev. 2012;16(7):4686–707. https://doi.org/10.1016/j.rser.2012.04.041.

    Article  CAS  Google Scholar 

  19. Hundy GF, Trott AR, Welch TC. The refrigeration cycle. In: Refrigeration, air conditioning and heat pumps. Amsterdam: Elsevier; 2016.

    Google Scholar 

  20. Zheng X, Ge TS, Wang RZ. Recent progress on desiccant materials for solid desiccant cooling systems. Energy. 2014;74:280–94. https://doi.org/10.1016/j.energy.2014.07.027.

    Article  Google Scholar 

  21. Jia CX, Dai YJ, Wu JY, Wang RZ. Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material. Energy Convers Manag. 2006;47(15–16):2523–34. https://doi.org/10.1016/j.enconman.2005.10.034.

    Article  CAS  Google Scholar 

  22. Al-Alili A, Hwang Y, Radermacher R. Performance of a desiccant wheel cycle utilizing new zeolite material: experimental investigation. Energy. 2015;81:137–45. https://doi.org/10.1016/j.energy.2014.11.084.

    Article  CAS  Google Scholar 

  23. Sultan M, et al. Insights of water vapor sorption onto polymer based sorbents. Adsorption. 2015;21(3):205–15. https://doi.org/10.1007/s10450-015-9663-y.

    Article  CAS  Google Scholar 

  24. Toribio F, Bellat JP, Nguyen PH, Dupont M. Adsorption of water vapor by poly(styrenesulfonic acid), sodium salt: isothermal and isobaric adsorption equilibria. J Colloid Interface Sci. 2004;280(2):315–21. https://doi.org/10.1016/j.jcis.2004.08.009.

    Article  CAS  PubMed  Google Scholar 

  25. Toribio F, Bellat JP, Nguyen PH, Dupont M. Adsorption of water vapor by poly(styrene) sulfonic acid sodium salt—Isothermal and isobaric adsorption equilibria. HVACR Res. 2005;11(2):305–17. https://doi.org/10.1080/10789669.2005.10391139.

    Article  Google Scholar 

  26. Sultan M, et al. Water vapor sorption kinetics of polymer based sorbents: theory and experiments. Appl Therm Eng. 2016;106:192–202. https://doi.org/10.1016/j.applthermaleng.2016.05.192.

    Article  CAS  Google Scholar 

  27. Sultan M, Miyazaki T, Saha BB, Koyama S. Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system. Renew Energy. 2016;86:785–95. https://doi.org/10.1016/j.renene.2015.09.015.

    Article  CAS  Google Scholar 

  28. Sultan M. Study on sorption characteristics of water adsorbents for agricultural air-conditioning systems. Kyushu University. Accessed: Mar. 03, 2022. [Online]. 2015 Available: https://doi.org/10.15017/1544017.

  29. Mahmood MH. Investigation of desiccant air-conditioning and evaporative cooling systems for agricultural storage applications. Kyushu University, Accessed: Sep. 29, 2021. [Online]. 2017 Available: https://doi.org/10.15017/1866337.

  30. Nagaya K, Li Y, Jin Z, Fukumuro M, Ando Y, Akaishi A. Low-temperature desiccant-based food drying system with airflow and temperature control. J Food Eng. 2006;75(1):71–7. https://doi.org/10.1016/j.jfoodeng.2005.03.051.

    Article  CAS  Google Scholar 

  31. Jeong J, Yamaguchi S, Saito K, Kawai S. Performance analysis of desiccant dehumidification systems driven by low-grade heat source. Int J Refrig. 2011;34(4):928–45. https://doi.org/10.1016/j.ijrefrig.2010.10.001.

    Article  CAS  Google Scholar 

  32. White SD, Goldsworthy M, Reece R, Spillmann T, Gorur A, Lee D-Y. Characterization of desiccant wheels with alternative materials at low regeneration temperatures. Int J Refrig. 2011;34(8):1786–91. https://doi.org/10.1016/j.ijrefrig.2011.06.012.

    Article  CAS  Google Scholar 

  33. Zhao Y, Ge TS, Dai YJ, Wang RZ. Experimental investigation on a desiccant dehumidification unit using fin-tube heat exchanger with silica gel coating. Appl Therm Eng. 2014;63(1):52–8. https://doi.org/10.1016/j.applthermaleng.2013.10.018.

    Article  CAS  Google Scholar 

  34. Yaningsih I, Wijayanta AT, Thu K, Miyazaki T. Influence of phase change phenomena on the performance of a desiccant dehumidification system. Appl Sci. 2020;10(3):868. https://doi.org/10.3390/app10030868.

    Article  CAS  Google Scholar 

  35. Yaningsih I, Wijayanta AT, Miyazaki T, Koyama S. Analysis of heat and mass transfer characteristics of desiccant dehumidifier system with honeycomb configuration. Appl Therm Eng. 2018;144:658–69. https://doi.org/10.1016/j.applthermaleng.2018.08.066.

    Article  CAS  Google Scholar 

  36. Kashif Shahzad M, Qadar Chaudhary G, Ali M, Ahmed Sheikh N, Shahid Khalil M, Rashid TU. Experimental evaluation of a solid desiccant system integrated with cross flow maisotsenko cycle evaporative cooler. Appl Therm Eng. 2018;128:1476–87. https://doi.org/10.1016/j.applthermaleng.2017.09.105.

    Article  Google Scholar 

  37. Goodarzia G, Thirukonda N, Heidari S, Akbarzadeh A, Date A. Performance evaluation of solid desiccant wheel regenerated by waste heat or renewable energy. Energy Proc. 2017;110:434–9. https://doi.org/10.1016/j.egypro.2017.03.165.

    Article  Google Scholar 

  38. Islam MR, Alan SWL, Chua KJ. Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling. Appl Energy. 2018;221:334–47. https://doi.org/10.1016/j.apenergy.2018.03.167.

    Article  Google Scholar 

  39. Lindberg V. Uncertainties and error propagation, Man. Uncertainties Graph. Vernier Caliper Part Rochester Inst. Technol. N. Y. USAhttpwww Rit EduuphysicsuncertinitiesUncertinitiespart2 Html Addsub. 2000.

  40. Kirkup L, Frenkel RB. An introduction to uncertainty in measurement: using the GUM (guide to the expression of uncertainty in measurement). Cambridge University Press; 2006.

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by KAUST Cooling Initiative grant, REP/1/3988-01-01” and subaward OSR-Cooling-2018-3988.3. The first author wishes to thank the financial support from China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Contributions

HY was involved in the methodology, writing—original draft, and visualization. SwS contributed to the writing—original draft and calculation. MF contributed to writing—review and editing. KT helped in the conceptualization, supervision, visualization, and writing—review and editing. TM was involved in the conceptualization and supervision. KC Ng contributed to writing—review and editing.

Corresponding author

Correspondence to Hao Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Seo, S.w., Mikšík, F. et al. Effects of temperature and humidity ratio on the performance of desiccant dehumidification system under low-temperature regeneration. J Therm Anal Calorim 148, 3045–3058 (2023). https://doi.org/10.1007/s10973-022-11368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11368-7

Keywords

Navigation