Skip to main content
Log in

Determination of phase change temperature of materials from adiabatic scanning calorimetry data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Melting and other first-order phase changes usually occur in phase change materials (PCMs) within a noticeable temperature range rather than at a unique phase change temperature (\(T_{\mathrm{pc}}\)). Then the enthalpy and heat capacity have rather wide jumps and peaks, respectively, spread over such ranges of temperatures. Surprisingly, wide jumps and peaks are observed even in plain and simple cases when PCMs are pure substances with negligible hysteresis and/or supercooling and the measurements are quasi-equilibrium using very slow heating/cooling rates, as in adiabatic scanning calorimetry (ASC). We show that in such cases a unique \(T_{\mathrm{pc}}\) can be identified and calculated from the measured heat capacity peaks. It suffices to take into account that PCM samples do not have an ideal microstructure but are rather composed of many micro- to nano-sized domains. The heat capacity peak is then an average of individual peaks that (a) come from all domains and (b) have different shifts from \(T_{\mathrm{pc}}\) for different domain sizes. Interpreting a heat capacity peak measured by ASC in this way, we present a procedure from which \(T_{\mathrm{pc}}\) can be evaluated. We apply the procedure to three examples of materials using available ASC data and point out the importance of the size distribution of domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.

    Article  CAS  Google Scholar 

  2. Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sust Energy Rev. 2011;15:1675–95.

    Article  CAS  Google Scholar 

  3. Oró E, de Gracia A, Castell A, Farid MM, Cabeza LF. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy. 2012;99:513–33.

    Article  Google Scholar 

  4. Zhao Y, Zhang XL, Xu XF. Application and research progress of cold storage technology in cold chain transportation and distribution. J Therm Anal Calorim. 2020;139:1419–34.

    Article  CAS  Google Scholar 

  5. Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Zeynali Famileh I, Calautit JK, Hughes BR, Zaki SA. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sust Energy Rev. 2016;60:1470–97.

    Article  Google Scholar 

  6. Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sust Energy Rev. 2007;11:1913–65.

    Article  CAS  Google Scholar 

  7. Xu B, Li P, Chan C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 2015;160:286–307.

    Article  Google Scholar 

  8. Omara AAM, Abuelnuor AAA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2020;139:1585–617.

    Article  CAS  Google Scholar 

  9. Rao Z, Wang S. A review of power battery thermal energy management. Renew Sust Energy Rev. 2011;15:4554–71.

    Article  CAS  Google Scholar 

  10. Ling Z, Zhang Z, Shi G, Fang X, Wang L, Gao X, Fang Y, Xu T, Wang S, Liu X. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sust Energy Rev. 2014;31:427–38.

    Article  Google Scholar 

  11. Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.

    Article  CAS  Google Scholar 

  12. Mehling H, Cabeza LF. Heat and cold storage with PCM. Berlin: Springer; 2008.

    Book  Google Scholar 

  13. Medved’ I, Trník A, Vozár L. Modeling of heat capacity peaks and enthalpy jumps of phase-change materials used for thermal energy storage. Int J Heat Mass Transf. 2017;107:123–32.

    Article  Google Scholar 

  14. Leys J, Duponchel B, Longuemart S, Glorieux C, Thoen J. A new calorimetric technique for phase change materials and its application to alkane-based PCMS. Mater Renew Sustain Energy. 2016;5:4.

    Article  Google Scholar 

  15. Tripathi CSP, Losada-Pérez P, Glorieux C, Kohlmeier A, Tamba MG, Mehl GH, Leys J. Nematic-nematic phase transition in the liquid crystal dimer CBC9CB and its mixtures with 5CB: a high-resolution adiabatic scanning calorimetric study. Phys Rev E. 2011;84:041707.

    Article  Google Scholar 

  16. Losada-Pérez P, Tripathi CSP, Leys J, Cordoyiannis G, Glorieux C, Thoen J. Measurements of heat capacity and enthalpy of phase change materials by adiabatic scanning calorimetry. Int J Thermophys. 2011;32:913–24.

    Article  Google Scholar 

  17. Thoen J, Cordoyiannis G, Glorieux C. Adiabatic scanning calorimetry investigation of the melting and order-disorder phase transitions in the linear alkanes heptadecane and nonadecane and some of their binary mixtures. J Chem Thermodyn. 2021;163:106596.

    Article  CAS  Google Scholar 

  18. Borgs C, Kotecký R. Finite-size effects at asymmetric first-order phase transitions. Phys Rev Lett. 1992;68:1734–7.

    Article  CAS  PubMed  Google Scholar 

  19. Borgs C, Kotecký R. Surface-induced finite-size effects for first-order phase transitions. J Stat Phys. 1995;79:43–115.

    Article  Google Scholar 

  20. Boldyreva EV, Drebushchak VA, Drebushchak TN, Paukov IE, Kovalevskaya YA, Shutova ES. Polymorphism of glycine: thermodynamic aspects. Part i - Relative stability of the polymorphs. J Therm Anal Calorim. 2003;73:409–18.

    Article  CAS  Google Scholar 

  21. Boldyreva EV, Drebushchak VA, Drebushchak TN, Paukov IE, Kovalevskaya YA, Shutova ES. Polymorphism of glycine: thermodynamic aspects. Part ii - Polymorphic transitions. J Therm Anal Calorim. 2003;73:419–28.

    Article  CAS  Google Scholar 

  22. Minkov VS, Drebushchak VA, Ogienko AG, Boldyreva EV. Decreasing particle size helps to preserve metastable polymorphs. A case study of dl-cysteine. CrystEngComm. 2011;13:4417–26.

    Article  CAS  Google Scholar 

  23. Sahoo SC, Panda MK, Nath NK, Naumov P. Biomimetic crystalline actuators: structure-kinematic aspects of the self-actuation and motility of thermosalient crystals. J Am Chem Soc. 2013;135:12241–51.

    Article  CAS  PubMed  Google Scholar 

  24. Seki T, Mashimo T, Ito H. Anisotropic strain release in a thermosalient crystal: correlation between the microscopic orientation of molecular rearrangements and the macroscopic mechanical motion. Chem Sci. 2019;10:4185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smets MMH, Kalkman E, Krieger A, Tinnemans P, Meekes H, Vlieg E, Cuppen HM. On the mechanism of solid-state phase transitions in molecular crystals-the role of cooperative motion in (quasi)racemic linear amino acids. IUCrJ. 2020;7:331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herrero E, Buller LJ, Abruña HD. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev. 2001;101:1897–930.

    Article  CAS  PubMed  Google Scholar 

  27. Huckaby DA, Blum L. A model for sequential 1st-order phase transitions occurring in the underpotential deposition of metals. J Electroanal Chem. 1991;315:255–61.

    Article  CAS  Google Scholar 

  28. Blum L, Huckaby DA. Phase transitions at liquid-solid interfaces: Padé approximant to adsorption isotherms and voltammograms. J Chem Phys. 1991;94:6887–94.

    Article  CAS  Google Scholar 

  29. Huckaby DA, Medved’ I. Shapes of voltammogram spikes explained as resulting from the effects of finite electrode crystal size. J Chem Phys. 2002;117:2914–22.

    Article  CAS  Google Scholar 

  30. Medved’ I, Huckaby DA. Voltammogram spikes interpreted as envelopes of spikes resulting from electrode crystals of various sizes: application to the UPD of Cu on Au(111). J Chem Phys. 2003;118:11147–59.

    Article  Google Scholar 

  31. Jurči M, Medved’ I. Fractal modeling of polycrystalline PCMs. AIP Conf Proc. 2020;2275:020021.

    Article  Google Scholar 

Download references

Acknowledgements

The research in this paper was supported by grants VEGA 1/0682/19 and RVO:11000. The authors would like to thank Prof. Christ Glorieux and Dr. Jan Leys from the Catholic University of Leuven, Belgium, for providing experimental data.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The idea for the article was due to Igor Medveď and Anton Trník. Analysis was performed by Igor Medveď and Milan Jurči. The first draft of the manuscript was written by Igor Medveď and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript

Corresponding author

Correspondence to Igor Medved’.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medved’, I., Jurči, M. & Trník, A. Determination of phase change temperature of materials from adiabatic scanning calorimetry data. J Therm Anal Calorim 148, 1693–1704 (2023). https://doi.org/10.1007/s10973-022-11335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11335-2

Keywords

Navigation