Skip to main content
Log in

Heat transfer analysis of tangent hyperbolic nanofluid in a ciliated tube with entropy generation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we analyze the effect of heat transfer on the flow of tangent hyperbolic nanofluid in a ciliated tube (fallopian tube where embryo in blood make the development). This study will be beneficial for the researchers and medical experts in the field of embryology. The nanoparticles are beneficial to remove the cysts from the fallopian tube where development of embryo takes place. To resolves the ciliary flow problems, medical doctors use nanoparticles (drug delivery) that may create a temperature gradient. The heat transfer helps to optimize the energy for which the entropy generation is reduced. Therefore, in this research we discuss the heat transfer effect on tangent hyperbolic nanofluid and entropy generation due to ciliary movement. The governing partial differential equations are solved by HPM and software MATHEMATICA™. Effect of viscoelastic parameter, nanoparticles, cilia length and Brinkman number on the velocity, temperature and entropy generation has been illustrated with the help of graphs. Graphical results show that thermal conductivity of fluid increases by adding nanoparticles. The entropy generation due to nanoparticles will decrease the viscosity near the tube wall and blood through tube will flow with normal pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({\varvec{V}}\) :

Velocity field vector

\(U, W\) :

Velocity components in fixed frame

\(u, w\) :

Velocity components in wave frame

\(R, Z\) :

Cylindrical coordinates of ciliated tube in fixed frame

\(r, z\) :

Cylindrical coordinates of ciliated tube in wave frame

\(P\) :

Pressure in fixed frame

\(p\) :

Pressure in wave frame

\(\tau\) :

Cauchy stress

\({\varvec{S}}\) :

Shear rate

\(c\) :

Wave speed

\(\left( {\rho c_{{\text{p}}} } \right)_{{{\text{nf}}}}\) :

Specific heat capacity of nanofluid

\(\left( {\rho c_{{\text{p}}} } \right)_{{\text{f}}}\) :

Specific heat capacity of base fluid

\(\left( {\rho c_{{\text{p}}} } \right)_{{\text{s}}}\) :

Specific heat capacity of nanoparticles

\(\epsilon\) :

Cilia length

\(\rho_{{\text{f}}}\) :

Density of fluid

\(\rho_{{{\text{nf}}}}\) :

Density of nanofluid

\(\rho_{{\text{s}}}\) :

Density of nanoparticles

\(\varphi\) :

Solid volume fraction

\(k_{{{\text{nf}}}}\) :

Thermal conductivity of nanofluid

\(k_{{\text{f}}}\) :

Thermal conductivity of base fluid

\(k_{{\text{s}}}\) :

Thermal conductivity of solid nanoparticles

\(\alpha\) :

Eccentricity of elliptical path

\(\eta_{\infty }\) :

Infinite shear rate viscosity

\(\eta_{0}\) :

Zero shear rate viscosity

\(\Gamma\) :

Time constant

\({\dot{\gamma }}\) :

Strain rate tensor

\({\varvec{\pi}}\) :

Second order tensor

\(\beta\) :

Wave number

\(m\) :

Power law index

\(A_{1}\) :

Rivlin–Erickson tensor

\(We\) :

Weissenberg number

\(Q\) :

Volume flow rate

\(\overline{Q}\) :

Mean volume flow rate

\(j\) :

Embedding parameter

\(T\) :

Temperature profile

\(T_{0}\) :

Temperature at the center of the tube

\(T_{1}\) :

Temperature at the ciliated wall

\({\text{Re}}\) :

Reynolds' number

\({\text{Br}}\) :

Brinkman number

\(Ns\) :

Entropy generation

\({\text{Be}}\) :

Bejan number

\(\theta\) :

Dimensionless temperature

References

  1. Bejan A. A study of entropy generation in fundamental convective heat transfer. J Heat Transf . 1979;101:718–25.

    Article  Google Scholar 

  2. Benedetti P, Sciubba E. Numerical calculation of the local rate of entropy generation in the flow around a heated finned-tube. ASME. 1993;30:81–91.

    CAS  Google Scholar 

  3. Pakdemirli M, Yilbas BS. Entropy generation in a pipe due to non-Newtonian fluid flow: constant viscosity case. Sadhana. 2006;31(1):21–9.

    Article  Google Scholar 

  4. Qasim M, Hayat Khan Z, Khan I, Al-Mdallal QM. Analysis of entropy generation in flow of methanol-based nanofluid in a sinusoidal wavy channel. Entropy. 2017. https://doi.org/10.3390/e19100490.

    Article  Google Scholar 

  5. Rashidi MM, Abbas MA. Effect of slip conditions and entropy generation analysis with an effective Prandtl number model on a nanofluid flow through a stretching sheet. Entropy. 2017. https://doi.org/10.3390/e19080414.

    Article  Google Scholar 

  6. Oztop HF, Al-Salem K. A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew Sustain Ener Rev. 2012;16(1):911–31.

    Article  CAS  Google Scholar 

  7. Selimefendigil F, Öztop HF. MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder. Int J Heat Mass Transf. 2016;98:40–51.

    Article  Google Scholar 

  8. Selimefendigil F, Öztop HF, Abu-Hamdeh N. Natural convection and entropy generation in nanofluid filled entrapped trapezoidal cavities under the influence of magnetic field. Entropy. 2016. https://doi.org/10.3390/e18020043.

    Article  Google Scholar 

  9. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J Magn Magn Mater. 2018;452:193–204.

    Article  CAS  Google Scholar 

  10. Zeeshan A, Bhatti MM, Muhammad T, Zhang L. Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel. Physica A. 2020. https://doi.org/10.1016/j.physa.2019.123999.

    Article  Google Scholar 

  11. Riaz A, Zeeshan A, Bhatti MM, Ellahi R. Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Physica A. 2020. https://doi.org/10.1016/j.physa.2019.123788.

    Article  Google Scholar 

  12. Alolaiyan H, Riaz A, Razaq A, Saleem N, Zeeshan A, Bhatti MM. Effects of double diffusion convection on third grade nanofluid through a curved compliant peristaltic channel. Coatings. 2020. https://doi.org/10.3390/coatings10020154.

    Article  Google Scholar 

  13. Ijaz N, Riaz A, Zeeshan A, Ellahi R, Sait SM. Buoyancy driven flow with gas-liquid coatings of peristaltic bubbly flow in elastic walls. Coatings. 2020. https://doi.org/10.3390/coatings10020115.

    Article  Google Scholar 

  14. Abd-Elaziz EM, Marin M, Othman MI. On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory. Symmetry. 2019. https://doi.org/10.3390/sym11030413.

    Article  Google Scholar 

  15. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab; 1995.

    Google Scholar 

  16. Nield DA, Kuznetsov AV. The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf. 2009;52:5792–5.

    Article  CAS  Google Scholar 

  17. Ibsen S, Sonnenberg A, Schutt C, Mukthavaram R, Yeh Y, Ortac I, Manouchehri S, Kesari S, Esener S, Heller MJ. Recovery of drug delivery nanoparticles from human plasma using an electrokinetic platform technology. Small. 2015;11(38):5088–96.

    Article  CAS  Google Scholar 

  18. Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Resp Dis. 1988;137(3):726–41.

    Article  CAS  Google Scholar 

  19. Brennen C, Winet H. Fluid mechanics of propulsion by cilia and flagella. Ann Rev Fluid Mech. 1977;9(1):339–98.

    Article  Google Scholar 

  20. Sanderson MJ, Sleigh MA. Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J Cell Sci. 1981;47(1):331–47.

    Article  CAS  Google Scholar 

  21. Vlase S, Marin M, Öchsner A, Scutaru ML. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin Mech Thermodyn. 2019;31(3):715–24.

    Article  Google Scholar 

  22. Blake J. A model for the micro-structure in ciliated organisms. J Fluid Mech. 1972;55(1):1–23.

    Article  Google Scholar 

  23. Ross SM, Corrsin S. Results of an analytical model of mucociliary pumping. J Appl Phys. 1974;37(3):333–40.

    CAS  Google Scholar 

  24. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    Article  CAS  Google Scholar 

  25. Varzaneh AA, Toghraie D, Karimipour A. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. J Therm Anal Calorim. 2020;139(1):701–20.

    Article  CAS  Google Scholar 

  26. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135(1):551–63.

    Article  CAS  Google Scholar 

  27. Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019;135:1643–54.

    Article  CAS  Google Scholar 

  28. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011. https://doi.org/10.1007/s10973-011-1631-5.

    Article  Google Scholar 

  29. Bagherzadeh SA, Jalali E, Sarafraz MM, Akbari OA, Karimipour A, Goodarzi M, Bach QV. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Methods H. 2019;30:2683–704.

    Article  Google Scholar 

  30. Hosseini R, Rashidi S, Esfahani JA. A lattice Boltzmann method to simulate combined radiation–force convection heat transfer mode. J Braz Soc Mech Sci Eng. 2017;39:3695–706.

    Article  CAS  Google Scholar 

  31. Hajatzadeh Pordanjani A, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137:997–1019.

    Article  CAS  Google Scholar 

  32. Tian Z, Arasteh H, Parsian A, Karimipour A, Safaei MR, Nguyen TK. Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed support vector machine method coupled with sensitivity analysis. Physica A. 2019. https://doi.org/10.1016/j.physa.2019.122456.

    Article  Google Scholar 

  33. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135:1009–19.

    Article  CAS  Google Scholar 

  34. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, Goodarzi M. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139:2623–31.

    Article  CAS  Google Scholar 

  35. Jyothi S, Reddy MS, Gangavathi P. Hyperbolic tangent fluid flow through a porous medium in an inclined channel with peristalsis. Int J Adv Sci Res Manag. 2016;1(4):113–21.

    Google Scholar 

  36. Maqbool K, Shaheen S, Mann AB. Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube. Springer Plus. 2016;5(1):1–6.

    Article  Google Scholar 

  37. Wazwaz AM. Partial differential equations and solitary waves theory. Cham: Springer Science & Business Media; 2010.

    Google Scholar 

  38. Saleem N, Munawar S. Entropy analysis in cilia driven pumping flow of hyperbolic tangent fluid with magnetic field effects. Fluid Dyn Res. 2020. https://doi.org/10.1088/1873-7005/ab724b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maqbool.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, S., Maqbool, K., Ellahi, R. et al. Heat transfer analysis of tangent hyperbolic nanofluid in a ciliated tube with entropy generation. J Therm Anal Calorim 144, 2337–2346 (2021). https://doi.org/10.1007/s10973-021-10681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10681-x

Keywords

Navigation