Skip to main content
Log in

Mechanochemical synthesis, thermoanalytical study and characterization of new multicomponent solid forms of norfloxacin with saccharin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cocrystallization is a very efficient strategy to improve the physicochemical properties of bioactive agents. A new norfloxacin (NOR)–saccharin cocrystal and a cocrystal–solvate were synthesized through the mechanochemical method (neat and liquid-assisted grinding), and the characterization was performed by thermal analysis (TG–DTA, DSC and DSC microscopy), infrared vibrational spectroscopy and powder X-ray diffraction. Moreover, solubility experiments carried out in water and buffer solutions (pH 3.0, 6.1 and 8.5) showed that norfloxacin has an aqueous solubility 3.5 times higher when cocrystallized with saccharin than in its pristine state, and an inverted pH-dependency compared to NOR alone (2 times higher in 6.1, slightly increase in pH 3.0, and a decrease of 0.7 times in 8.5 buffer solution). Furthermore, the solvate–cocrystal has a water solubility 2.3 times higher than NOR and the same solubility in 6.1 buffer solution than the cocrystal (2 times higher than NOR alone).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bearden DT, Danziger LH. Mechanism of action of and resistance to quinolones. Pharmacotherapy. 2001;21:224S-232S. https://doi.org/10.1111/j.1751-7915.2008.00063.x.

    Article  CAS  PubMed  Google Scholar 

  2. Vila J. Fluoroquinolone resistance. Front Antimicrob Resist. 2005. https://doi.org/10.1128/9781555817572.chap4.

    Article  Google Scholar 

  3. Norrby SR. Side-effects of quinolones: comparisons between quinolones and other antibiotics. Eur J Clin Microbiol Infect Dis. 1991;10:378–83. https://doi.org/10.1007/BF01967014.

    Article  CAS  PubMed  Google Scholar 

  4. Corrado ML, Struble WE, Peter C, Hoagland V, Sabbaj J. Norfloxacin: review of safety studies. Am J Med. 1987;82:22–6.

    Article  CAS  PubMed  Google Scholar 

  5. Holmes B, Brogden RN, Richards DM. Norfloxacin A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1985;30:482–513. https://doi.org/10.2165/00003495-198530060-00003.

    Article  CAS  PubMed  Google Scholar 

  6. de Souza JM, Galaverna R, de Souza AAN, Brocksom TJ, Pastre JC, de Souza ROMA, et al. Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. An Acad Bras Cienc. 2018;90:1131–74.

    Article  PubMed  Google Scholar 

  7. Elder DP. Effective formulation development strategies for poorly soluble active pharmaceutical ingredients (APIs). Am Pharm Rev 2010 [cited 2019 Sep 19]. https://www.americanpharmaceuticalreview.com/Featured-Articles/114950-Effective-Formulation-Development-Strategies-for-Poorly-Soluble-Active-Pharmaceutical-Ingredients-APIs/.

  8. Kawakami K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv Drug Deliv Rev. 2012;64:480–95.

    Article  CAS  PubMed  Google Scholar 

  9. ICH Harmonised Guideline. Biopharmaceutics classification system-based biowaivers M9. Int Counc Harmon Tech Requir Pharm Hum Use. 2018, p. 19.

  10. Breda SA, Jimenez-Kairuz AF, Manzo RH, Olivera ME. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. Int J Pharm. 2009;371:106–13.

    Article  CAS  PubMed  Google Scholar 

  11. Savjani J. Co-crystallization: An approach to improve the performance characteristics of active pharmaceutical ingredients. Asian J Pharm. 2015;9:147.

    Article  CAS  Google Scholar 

  12. Chaudhari S, Nikam SA, Khatri N, Wakde S. Co-crystals: a review. J Drug Deliv Ther. 2019;8:350–8.

    Article  Google Scholar 

  13. Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev. 2017;117:178–95.

    Article  CAS  PubMed  Google Scholar 

  14. Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today. 2018;21:796–804.

    Google Scholar 

  15. Gajda M, Nartowski KP, Pluta J, Karolewicz B. Continuous, one-step synthesis of pharmaceutical cocrystals via hot melt extrusion from neat to matrix-assisted processing—state of the art. Int J Pharm. 2019;558:426–40. https://doi.org/10.1016/j.ijpharm.2019.01.016.

    Article  CAS  PubMed  Google Scholar 

  16. Park B, Yoon W, Yun J, Ban E, Yun H, Kim A. Emodin-nicotinamide (1:2) cocrystal identified by thermal screening to improve emodin solubility. Int J Pharm. 2019;557:26–35.

    Article  CAS  PubMed  Google Scholar 

  17. Basavoju S, Boström D, Velaga SP. Pharmaceutical cocrystal and salts of norfloxacin. Cryst Growth Des. 2006;6:2699–708. https://doi.org/10.1021/cg060327x.

    Article  CAS  Google Scholar 

  18. Velaga SP, Basavoju S, Boström D. Norfloxacin saccharinate-saccharin dihydrate cocrystal—a new pharmaceutical cocrystal with an organic counter ion. J Mol Struct. 2008;889:150–3.

    Article  CAS  Google Scholar 

  19. Ferreira LT, Alarcon RT, Perpétuo GL, Bannach G. Investigation and characterization by TG/DTG–DTA and DSC of the fusion of Riboflavin, and its interaction with the antibiotic norfloxacin in the screening of cocrystal. J Therm Anal Calorim. 2019;136:581–8.

    Article  CAS  Google Scholar 

  20. Huang XF, Zhang ZH, Zhang QQ, Wang LZ, He MY, Chen Q, et al. Norfloxacin salts with benzenedicarboxylic acids: charge-assisted hydrogen-bonding recognition and solubility regulation. CrystEngComm. 2013;15:6090–100.

    Article  CAS  Google Scholar 

  21. Oser BL. Highlights in the history of saccharin toxicology. Food Chem Toxicol. 1985;23:535–42.

    Article  CAS  PubMed  Google Scholar 

  22. Friščić T, Childs SL, Rizvi SAA, Jones W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm. 2009;11:418–26.

    Article  Google Scholar 

  23. Descamps M, Willart JF. Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Deliv Rev. 2016;100:51–66.

    Article  CAS  PubMed  Google Scholar 

  24. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5:905–20. https://doi.org/10.1021/mp800092t.

    Article  CAS  PubMed  Google Scholar 

  25. Cherukuvada S, Guru Row TN. Supporting information—comprehending the formation of eutectics and cocrystals in terms of design and their structural interrelationships. Cryst Growth Des. 2014;14:4187–98. https://doi.org/10.1021/cg500790q.

    Article  CAS  Google Scholar 

  26. Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem Commun. 2014;50:906–23.

    Article  CAS  Google Scholar 

  27. Kogawa AC, Corrêa JCR, Salgado HRN. Influence of darunavir: β-cyclodextrin complex on the solubility of darunavir. Res Rev J Pharmacol Toxicol Stud. 2014;2:50–5.

    Google Scholar 

  28. Kogawa AC, Peltonen L, Antonio SG, Salgado HRN. Submission of rifaximin to different techniques: characterization, solubility study, and microbiological evaluation. AAPS PharmSciTech. 2019;20:125. https://doi.org/10.1208/s12249-019-1329-8.

    Article  CAS  PubMed  Google Scholar 

  29. Dua K, Ramana M, Singh Sara U, Himaja M, Agrawal A, Garg V, et al. Investigation of enhancement of solubility of norfloxacin & #946;-cyclodextrin in presence of acidic solubilizing additives. Curr Drug Deliv. 2007;4:21–5.

    Article  CAS  PubMed  Google Scholar 

  30. Chierentin L, Salgado HRN. Performance characteristics of UV and visible spectrophotometry methods for quantitative determination of norfloxacin in tablets. J Sci Res. 2014;6:531–41.

    Article  CAS  Google Scholar 

  31. Chongcharoen W, Byrn SR, Sutanthavibul N. Solid state interconversion between anhydrous norfloxacin and its hydrates. J Pharm Sci. 2008;97:473–89. https://doi.org/10.1002/jps.21165.

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka JS, de Salvi S, Antonio SG, de Paiva-Santos C. The use of the software JST-XRD for identifcation of crystalline phases in pharmaceutical raw materials and tablets. J Basic Appl Pharm Sci. 2016;37:2–8.

    Google Scholar 

  33. Nunes WDG, do Nascimento ALCS, Moura A, Gaglieri C, Vallim GB, Nascimento LC, et al. Thermal, spectroscopic and antimicrobial activity characterization of some norfloxacin complexes. J Therm Anal Calorim. 2018;132:1077–88.

    Article  CAS  Google Scholar 

  34. Bernal C, Couto AB, Breviglieri ST, Cavalheiro ÉTG. Influência de alguns parâmetros experimentais nos resultados de análises calorimétricas diferenciais—DSC. Quim Nova. 2002;25:849–55.

    Article  CAS  Google Scholar 

  35. de Carvalho LC, Segato MP, Nunes RS, Novak C, Cavalheiro ÉTG. Thermoanalytical studies of some sweeteners. J Therm Anal Calorim. 2009;97:359–65. https://doi.org/10.1007/s10973-009-0262-6.

    Article  CAS  Google Scholar 

  36. Mazuel C. Norfloxacin. Anal profiles drug Subst. 1991.

  37. Saganowska P, Wesolowski M. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. J Therm Anal Calorim. 2018;133:785–95. https://doi.org/10.1007/s10973-017-6858-3.

    Article  CAS  Google Scholar 

  38. Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res. 2013;30:70–80. https://doi.org/10.1007/s11095-012-0850-1.

    Article  CAS  PubMed  Google Scholar 

  39. Drozd KV, Arkhipov SG, Boldyreva EV, Perlovich GL. Crystal structure of a 1:1 salt of 4-aminobenzoic acid (Vitamin B 10) with pyrazinoic acid. Acta Crystallogr Sect E Crystallogr Commun. 2018;74:1923–7.

    Article  CAS  Google Scholar 

  40. de Almeida AC, Torquetti C, Ferreira PO, Fernandes RP, dos Santos EC, Kogawa AC, et al. Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: mechanochemical synthesis, characterization, thermal and solubility study. Thermochim Acta. 2020;685:178346.

    Article  Google Scholar 

  41. Lin HL, Wu TK, Lin SY. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach. Thermochim Acta. 2014;575:313–21. https://doi.org/10.1016/j.tca.2013.10.029.

    Article  CAS  Google Scholar 

  42. Yamashita H, Hirakura Y, Yuda M, Terada K. Coformer screening using thermal analysis based on binary phase diagrams. Pharm Res. 2014;31:1946–57.

    Article  CAS  PubMed  Google Scholar 

  43. Barbas R, Prohens R, Puigjaner C. A new polymorph of norfloxacin. J Therm Anal Calorim. 2007;89:687–92.

    Article  CAS  Google Scholar 

  44. Šuštar B, Bukovec N, Bukovec P. Polymorphism and stability of norfloxacin, (1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinil)-3-quinolinocarboxylic acid. J Therm Anal. 1993;40:475–81. https://doi.org/10.1007/BF02546616.

    Article  Google Scholar 

  45. Jayasankar A, Somwangthanaroj A, Shao ZJ, Rodríguez-Hornedo N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm Res. 2006;23:2381–92.

    Article  CAS  PubMed  Google Scholar 

  46. Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des Am Chem Soc. 2018;18:6370–87.

    Article  CAS  Google Scholar 

  47. Lien Nguyen K, Friščić T, Day GM, Gladden LF, Jones W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat Mater. 2007;6:206–9.

    Article  PubMed  Google Scholar 

  48. Velaga SP, Basavoju S, Boström D. Norfloxacin saccharinate–saccharin dihydrate cocrystal—a new pharmaceutical cocrystal with an organic counter ion. J Mol Struct. 2008;889:150–3.

    Article  CAS  Google Scholar 

  49. Sahoo S, Chakraborti CK, Behera PK, Mishra SC. FTIR and Raman spectroscopic investigations of a norfloxacin/carbopol934 polymerie suspension. J Young Pharm. 2013;4:138–45.

    Article  Google Scholar 

  50. Puigjaner C, Barbas R, Portell A, Font-Bardia M, Alcobé X, Prohens R. Revisiting the solid state of norfloxacin. Cryst Growth Des. 2010;10:2948–53. https://doi.org/10.1021/cg9014898.

    Article  CAS  Google Scholar 

  51. Yu X, Zipp GL, Davidson GW. The effect of temperature and pH on the solubility of quinolone compounds: estimation of heat of fusion. Pharm Res. 1994;11:522–7.

    Article  CAS  PubMed  Google Scholar 

  52. Khankari RK, Grant DJW. Pharmaceutical hydrates. Thermochim Acta. 1995;248:61–79.

    Article  CAS  Google Scholar 

  53. Roy S, Goud NR, Babu NJ, Iqbal J, Kruthiventi AK, Nangia A. Crystal structures of norfloxacin hydrates. Cryst Growth Des. 2008;8:4343–6. https://doi.org/10.1134/S1070363213120372.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CPID/CDMF, FAPESP (Grant Nos. 2013/09022-7, 2017/14936-9, 2018/12463-9 and 2018/24378-6), CNPq (Grant Nos. 421469/2016-1and 159936/2018-7) and CAPES (Grant No. 001) foundations (Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Junior Caires.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 118237 KB)

Supplementary file2 (AVI 8673 KB)

Supplementary file3 (AVI 8585 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P.O., de Moura, A., de Almeida, A.C. et al. Mechanochemical synthesis, thermoanalytical study and characterization of new multicomponent solid forms of norfloxacin with saccharin. J Therm Anal Calorim 147, 1985–1997 (2022). https://doi.org/10.1007/s10973-021-10658-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10658-w

Keywords

Navigation