Skip to main content
Log in

Flat sheet direct contact membrane distillation desalination system using temperature-dependent correlations: thermal efficiency via a multi-parameter sensitivity analysis based on Monte Carlo method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a 1D model of direct contact membrane distillation is presented in which all fluid properties are temperature-dependent. In addition, a Nusselt number (Nu) relationship for developing flow in ducts (accounting for both thermal and hydrodynamic effects) is used to obtain the convective heat transfer coefficient at each side of the membrane. Simulated mass flux shows very good agreement with experimental measurements at various feed temperature, flow rate and concentration. A comprehensive sensitivity analysis of all operational and geometrical parameters, as well as Nu estimation parameters on water mass flux across the membrane \((J_{\text{m}} )\) and thermal efficiency, is also done. To determine the relative importance of each parameter, a multi-parameter sensitivity analysis (MPSA) based on the Monte Carlo method is applied, and the sensitivity index of each parameter at the defined range is computed. Results show that \(J_{\text{m}}\) is highly sensitive to bulk feed inlet temperature (\(T_{{{\text{in}},{\text{f}}}}\)) while both \(J_{\text{m}}\) and thermal efficiency are highly sensitive to membrane porosity. Results show that among all parameters, just membrane porosity is highly sensitive which affects both mass flux and thermal efficiency especially at low \(T_{{{\text{in}}.{\text{f}}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area (m2)

B :

Membrane flux coefficient (kg m−2 Pa−1 s−1)

D :

Water diffusion coefficient (m2 s−1)

dA :

Area element (m2)

Dz :

Length element (m)

F :

Friction factor

H :

Specific enthalpy (J kg−1)

\(h_{\text{ch}}\) :

Channel height (m)

\(h_{\text{m}}\) :

Membrane thickness \((\upmu{\text{m}})\)

\(h_{\text{t}}\) :

Convective heat transfer coefficients (W m−2 K−1)

\(J_{\text{m}}\) :

Membrane water vapor mass flux (kg m−2 s−1)

K :

Gain coefficient and thermal conductivity (W m−1 K−1)

L :

Channel length (m)

M :

Blending parameter

\(M_{\text{w}}\) :

Water molecular weight (kg mol−1)

\(\dot{m}\) :

Mass flow rate (kg s−1)

P :

Pressure (Pa)

\(Q\) :

Volume flow rate (L min−1)

Q :

Heat flux (W m−2)

R :

Gas constant (J K−1 mol−1)

\(r_{\text{p}}\) :

Pore size (\(\upmu{\text{m}}\))

S :

Salinity (ppm)

T :

Temperature (K or °C)

W :

Channel width (m)

Z :

Z-axis (flow direction) (m)

\(z^{*}\) :

Dimensionless position

\(\gamma\) :

Activity coefficient and shape parameter

\(\delta\) :

Membrane thickness (\(\upmu{\text{m}}\))

\(\varepsilon\) :

Aspect ratio of duct

\(\epsilon\) :

Membrane porosity

\(\eta\) :

Thermal efficiency

\(\kappa\) :

Sensitivity index

\(\tau\) :

Membrane tortuosity

a:

Air

ave:

Average

b:

Bulk

f:

Feed

g:

Gas

in:

Inlet

m:

Membrane

p:

Permeate

s:

Solid

v:

Vapor

w:

Water

AGMD:

Air gap membrane distillation

DCMD:

Direct contact membrane distillation

MD:

Membrane distillation

MPSA:

Multi-parameter sensitivity analysis

\({\text{Nu}}\) :

Nusselt no

\({ \Pr }\) :

Prandtl no

PTFE:

Polytetrafluoroethylene

Re:

Reynolds no

SGMD:

Swiping gas membrane distillation

VMD:

Vacuum membrane distillation

References

  1. Kiss AA, Kattan Readi OM. An industrial perspective on membrane distillation processes. J Chem Technol Biotechnol. 2018;93(8):2047–55.

    CAS  Google Scholar 

  2. Hausmann A, et al. Performance assessment of membrane distillation for skim milk and whey processing. J Dairy Sci. 2014;97(1):56–71.

    CAS  PubMed  Google Scholar 

  3. Al-Obaidani S, et al. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J Membr Sci. 2008;323(1):85–98.

    CAS  Google Scholar 

  4. Macedonio F, et al. Direct contact membrane distillation for treatment of oilfield produced water. Sep Purif Technol. 2014;126:69–81.

    CAS  Google Scholar 

  5. Saffarini RB, Summers EK, Arafat HA. Technical evaluation of stand-alone solar powered membrane distillation systems. Desalination. 2012;286:332–41.

    CAS  Google Scholar 

  6. Hausmann A, et al. Integration of membrane distillation into heat paths of industrial processes. Chem Eng J. 2012;211:378–87.

    Google Scholar 

  7. Walton J, et al. Solar and waste heat desalination by membrane distillation. Desalin Water Purif Res Dev Prog Rep. 2004;81:20.

    Google Scholar 

  8. Mericq J-P, Laborie S, Cabassud C. Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 2010;44(18):5260–73.

    CAS  PubMed  Google Scholar 

  9. Ji X, et al. Membrane distillation-crystallization of seawater reverse osmosis brines. Sep Purif Technol. 2010;71(1):76–82.

    CAS  Google Scholar 

  10. Drioli E, et al. Integrated membrane operations in desalination processes. Desalination. 1999;122(2–3):141–5.

    CAS  Google Scholar 

  11. González D, Amigo J, Suárez F. Membrane distillation: Perspectives for sustainable and improved desalination. Renew Sustain Energy Rev. 2017;80:238–59.

    Google Scholar 

  12. Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination. 2012;287:2–18.

    CAS  Google Scholar 

  13. Khayet M. Membranes and theoretical modeling of membrane distillation: a review. Adv Coll Interface Sci. 2011;164(1–2):56–88.

    CAS  Google Scholar 

  14. Ali A, et al. Optimization of module length for continuous direct contact membrane distillation process. Chem Eng Process. 2016;110:188–200.

    CAS  Google Scholar 

  15. Ali A, et al. Designing and optimization of continuous direct contact membrane distillation process. Desalination. 2018;426:97–107.

    CAS  Google Scholar 

  16. Khalifa A, et al. Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination. 2017;404:22–34.

    CAS  Google Scholar 

  17. Manawi YM, et al. A predictive model for the assessment of the temperature polarization effect in direct contact membrane distillation desalination of high salinity feed. Desalination. 2014;341:38–49.

    CAS  Google Scholar 

  18. Schofield R, et al. Factors affecting flux in membrane distillation. Desalination. 1990;77:279–94.

    CAS  Google Scholar 

  19. Bandini S, Gostoli C, Sarti G. Role of heat and mass transfer in membrane distillation process. Desalination. 1991;81(1–3):91–106.

    CAS  Google Scholar 

  20. Abu Al-Rub FA, Banat F, Beni-Melhim K. Parametric sensitivity analysis of direct contact membrane distillation. Sep Sci Technol. 2002;37(14):3245–71.

    Google Scholar 

  21. Abu Al-Rub FA, Banat F, Bani-Melhem K. Sensitivity analysis of air gap membrane distillation. Separ Sci Technol. 2003;38(15):3645–67.

    CAS  Google Scholar 

  22. Banat F, Al-Rub FA, Bani-Melhem K. Desalination by vacuum membrane distillation: sensitivity analysis. Sep Purif Technol. 2003;33(1):75–87.

    CAS  Google Scholar 

  23. Hwang HJ, et al. Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and modeling. J Membr Sci. 2011;371(1–2):90–8.

    CAS  Google Scholar 

  24. Bahmanyar A, Asghari M, Khoobi N. Numerical simulation and theoretical study on simultaneously effects of operating parameters in direct contact membrane distillation. Chem Eng Process. 2012;61:42–50.

    CAS  Google Scholar 

  25. Wu HY, Wang R, Field RW. Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux. J Membr Sci. 2014;470:257–65.

    CAS  Google Scholar 

  26. Bouchrit R, et al. Direct contact membrane distillation: Capability to treat hyper-saline solution. Desalination. 2015;376:117–29.

    CAS  Google Scholar 

  27. Lee J-G, et al. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane. J Membr Sci. 2015;478:85–95.

    CAS  Google Scholar 

  28. Hayer H, Bakhtiari O, Mohammadi T. Simulation of momentum, heat and mass transfer in direct contact membrane distillation: A computational fluid dynamics approach. J Ind Eng Chem. 2015;21:1379–82.

    CAS  Google Scholar 

  29. Deshpande J, Nithyanandam K, Pitchumani R. Analysis and design of direct contact membrane distillation. J Membr Sci. 2017;523:301–16.

    CAS  Google Scholar 

  30. Imdakm A, Matsuura T. Simulation of heat and mass transfer in direct contact membrane distillation (MD): the effect of membrane physical properties. J Membr Sci. 2005;262(1–2):117–28.

    CAS  Google Scholar 

  31. Jantaporn W, Ali A, Aimar P. Specific energy requirement of direct contact membrane distillation. Chem Eng Res Des. 2017;128:15–26.

    CAS  Google Scholar 

  32. Ullah R, et al. Energy efficiency of direct contact membrane distillation. Desalination. 2018;433:56–67.

    CAS  Google Scholar 

  33. Hitsov I, et al. Modelling approaches in membrane distillation: a critical review. Sep Purif Technol. 2015;142:48–64.

    CAS  Google Scholar 

  34. Muzychka Y, Yovanovich M. Laminar forced convection heat transfer in the combined entry region of non-circular ducts. J Heat Transfer. 2004;126(1):54–61.

    Google Scholar 

  35. Curcio E, Drioli E. Membrane distillation and related operations—a review. Separ Purif Rev. 2005;34(1):35–86.

    CAS  Google Scholar 

  36. Summers EK, Arafat HA. Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination. 2012;290:54–66.

    CAS  Google Scholar 

  37. Rao G, Hiibel SR, Childress AE. Simplified flux prediction in direct-contact membrane distillation using a membrane structural parameter. Desalination. 2014;351:151–62.

    CAS  Google Scholar 

  38. Chung S, et al. Design strategy for networking membrane module and heat exchanger for direct contact membrane distillation process in seawater desalination. Desalination. 2014;349:126–35.

    CAS  Google Scholar 

  39. Khayet M, Velázquez A, Mengual JI. Modelling mass transport through a porous partition: effect of pore size distribution. J Non-Equilib Thermodyn. 2004;29(3):279–99.

    CAS  Google Scholar 

  40. Lawson KW, Lloyd DR. Membrane distillation. J Membr Sci. 1997;124(1):1–25.

    CAS  Google Scholar 

  41. Khayet M, Godino M, Mengual J. Modelling transport mechanism through a porous partition. J Non-Equilib Thermodyn. 2001;26(1):1–14.

    CAS  Google Scholar 

  42. Phattaranawik J, Jiraratananon R. Direct contact membrane distillation: effect of mass transfer on heat transfer. J Membr Sci. 2001;188(1):137–43.

    CAS  Google Scholar 

  43. Martínez L, Rodríguez-Maroto JM. On transport resistances in direct contact membrane distillation. J Membr Sci. 2007;295(1–2):28–39.

    Google Scholar 

  44. Martı́nez-Dı́ez L, Vazquez-Gonzalez MI. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. J Membrane Sci. 1999;156(2):265–73.

    Google Scholar 

  45. Choi J, Harvey JW, Conklin MH. Use of multi-parameter sensitivity analysis to determine relative importance of factors influencing natural attenuation of mining contaminants. Report: US Geol Surv Water-Resourc Investig Prog; 1999.

    Google Scholar 

  46. Zhao D, et al. Study of the modeling parameter effects on the polarization characteristics of the PEM fuel cell. Int J Hydrogen Energy. 2016;41(47):22316–27.

    CAS  Google Scholar 

  47. Keshavarzzadeh Amir H. Design and bio-inspired optimization of direct contact membrane distillation for desalination based on constructal law. Sci Rep. 2020;10:16790. https://doi.org/10.1038/s41598-020-73964-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ajili SH, Haratian M, Karimipour A, Bach QV. Non-uniform slab heating pattern in a preheating furnace to reduce fuel consumption: burners’ load distribution effects through semitransparent medium via discreet ordinates’ thermal radiation and k–? Turbulent model. Int J Thermophys. 2020;41(9):128.

    Google Scholar 

  49. Dehkordi KG, Karimipour A, Afrand M, Toghraie D, Isfahani AHM. The electric field and microchannel type effects on H 2 O/Fe 3 O 4 nanofluid boiling process: molecular dynamics study. Int J Thermophys. 2020;41(9):132.

    Google Scholar 

  50. Asgari A, Nguyen Q, Karimipour A, Bach QV, Hekmatifar M, Sabetvand R. Develop molecular dynamics method to simulate the flow and thermal domains of H 2 O/Cu nanofluid in a nanochannel affected by an external electric field. Int J Thermophys. 2020;41(9):126.

    CAS  Google Scholar 

  51. Salimpour MR, Darvanjooghi MHK, Abdollahi A, Karimipour A, Goodarzi M. Providing a model for Csf according to pool boiling convection heat transfer of water/ferrous oxide nanofluid using sensitivity analysis. Int J Numer Meth Heat Fluid Flow. 2019;30(6):2867–81.

    Google Scholar 

  52. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, Goodarzi M. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139(4):2623–31.

    CAS  Google Scholar 

  53. Sun C, Fard BE, Karimipour A, Abdollahi A, Bach QV. Producing ZrO2/LP107160 NF and presenting a correlation for prediction of thermal conductivity via GMDH method: An empirical and numerical investigation. Phys E Low-dimens Syst Nanostruct. 2020;1:114511.

    Google Scholar 

  54. Li Z, Asadi S, Karimipour A, Abdollahi A, Tlili I. Experimental study of temperature and mass fraction effects on thermal conductivity and dynamic viscosity of SiO2-oleic acid/liquid paraffin nanofluid. Int Commun Heat Mass Transfer. 2020;110:104436.

    CAS  Google Scholar 

  55. Mozaffari M, D’Orazio A, Karimipour A, Abdollahi A, Safaei MR. Lattice Boltzmann method to simulate convection heat transfer in a microchannel under heat flux. Int J Numer Meth Heat Fluid Flow. 2019;30(6):3371–98.

    Google Scholar 

  56. Karimipour A, Bagherzadeh SA, Taghipour A, Abdollahi A, Safaei MR. A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data. Physica A. 2019;521:89–97.

    CAS  Google Scholar 

  57. Sedeh RN, Abdollahi A, Karimipour A. Experimental investigation toward obtaining nanoparticles’ surficial interaction with basefluid components based on measuring thermal conductivity of nanofluids. Int Commun Heat Mass Transfer. 2019;103:72–82.

    CAS  Google Scholar 

  58. Dehghani Y, Abdollahi A, Karimipour A. Experimental investigation toward obtaining a new correlation for viscosity of WO 3 and Al 2 O 3 nanoparticles-loaded nanofluid within aqueous and non-aqueous basefluids. J Therm Anal Calorim. 2019;135(1):713–28.

    CAS  Google Scholar 

  59. Abdollahi A, Darvanjooghi MHK, Karimipour A, Safaei MR. Experimental study to obtain the viscosity of CuO-loaded nanofluid: effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation. Meccanica. 2018;53(15):3739–57.

    Google Scholar 

  60. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  61. Karimipour A, Ghasemi S, Darvanjooghi MHK, Abdollahi A. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int Commun Heat Mass Transfer. 2018;92:90–9.

    CAS  Google Scholar 

  62. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Physica A. 2018;509:515–35.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under grant No. (24-135-35-HiCi). The authors, therefore, acknowledge technical and financial support of KAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Turki, Y.A., Mebarek-Oudina, F., Ahmadian, A. et al. Flat sheet direct contact membrane distillation desalination system using temperature-dependent correlations: thermal efficiency via a multi-parameter sensitivity analysis based on Monte Carlo method. J Therm Anal Calorim 144, 2641–2652 (2021). https://doi.org/10.1007/s10973-020-10503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10503-6

Keywords

Navigation