Skip to main content
Log in

Mechanochemical synthesis, characterization and thermoanalytical study of a new curcumin derivative

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The curcumin is the major constituent of turmeric plant (Curcuma longa), which presents several biological activities such as antioxidant, bactericidal, anti-inflammatory and antitumor. An interesting strategy to improve its properties is to synthetize curcumin derivatives. Thus, the synthesis of a new curcumin derivative (DCUR) with 4-carboxybenzaldehyde (4-CBA) becomes interesting, which occurs by a Knoevenagel reaction, a common methodology used to synthesize curcumin analogues. The synthesis was carried out by the mechanochemical method, which is an efficient green method for the synthesis of organic compounds. The most efficient grinding time for mechanochemical synthesis was determined using PXRD and DSC techniques. 1H NMR, DEPTQ and FTIR analyses confirmed the structure of DCUR. This new methodology is more efficient (at least 5×), and cleaner than usual methods described in the literature to obtain a new compound by Knoevenagel reaction. The TG–DTA, DSC and DSC-microscopy techniques were used to confirm the formation of the compound and to study its thermal behavior. Moreover, the thermoanalytical of 4-CBA showed that this compound presents a reversible solid–solid phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta SC, Patchva S, Aggarwa BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013. https://doi.org/10.1208/s12248-012-9432-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qiu X, et al. Synthesis and identification of new 4-arylidene curcumin analogs as potential anticancer agents targeting nuclear factor-κB signaling pathway. J Med Chem. 2014. https://doi.org/10.1021/jm1004545.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aggarwal BB, et al. Curcumin—biological and medicinal properties. Tumeric Genus Curcuma. 2006;70:297–368.

    Google Scholar 

  4. Yousefi A, et al. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol. 2015;78:46–55.

    Article  CAS  Google Scholar 

  5. Ajavakom V, et al. Curcuminoids in multi-component synthesis. J Heterocycl Chem. 2018;55:13–20.

    Article  CAS  Google Scholar 

  6. Kant V, et al. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol. 2014;20:322–30.

    Article  CAS  Google Scholar 

  7. Submhan MA, et al. Synthesis and characterization of metal complexes containing curcumin (C21 H20 O6) and study of their anti-microbial activities and DNA binding properties. J Sci Res. 2015;6:97–109.

    Article  Google Scholar 

  8. Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19:20091–112.

    Article  Google Scholar 

  9. Santiago VH, et al. Curcumina. O pó dourado do açafrão-da-terra: Instrospecções sobre química e atividade biológicas. Quim Nova. 2010;33:538–52.

    Google Scholar 

  10. Hussain Z, et al. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng C. 2017;77:1316–26.

    Article  CAS  Google Scholar 

  11. Bansal SS, et al. Advanced drug-delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2012;4:1158–71.

    Article  Google Scholar 

  12. Ali I, et al. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: synthesis, pharmacological and simulation studies. Bioorg Med Chem. 2013;21:3808–20.

    Article  CAS  Google Scholar 

  13. Dohutia C, et al. Molecular docking. Synthesis and in vitro antimalarial evaluation of certain novel curcumin analogues. Braz J Pharm. 2007;3:1–14.

    Google Scholar 

  14. Knoevenagel E. Condensationen zwischen Malonester und Aldehyden unter dem Einfluss von Ammoniak und organischen Aminen. Ber Dtsch Chem Ges. 1895;27:2585–95.

    Google Scholar 

  15. Zambre AP, et al. Cooper Conjugates of Knoevenagel condesates of curcumin and theis Schiff Base derivatives: synthesis, spectroscopy, magnetism, ESR, and electrochemistry. Synth React Inorg, Metal Org Nano Met Chem. 2007;37:37–9.

    Article  Google Scholar 

  16. Jha NS, et al. Targetin human telomeric G-quadruplex DNA with curcumin and its synthesized analogues under molecular crowding condition. RSC Adv. 2016;6:7474–87.

    Article  CAS  Google Scholar 

  17. Khare R, et al. The importance and applications of knoevenagel reaction (brief review). Orient J Chem. 2018. https://doi.org/10.13005/ojc/350154.

    Article  Google Scholar 

  18. Padhye S, et al. New difluoro knoevenagel condensates of curcumin, their schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res. 2009;26:1874–80.

    Article  CAS  Google Scholar 

  19. Liu W, et al. Difluoroborate-based conjugated organic polymer: a high-performance heterogeneous photocatalyst for oxidative coupling reactions. J Mater Sci. 2019;54:1205–12212.

    Article  CAS  Google Scholar 

  20. Haferkamp S, Kraus W, Emmerling F. Studies on the mechanochemical Knoevenagel condensation of fluorinated benzaldehyde derivates. J Mater Sci. 2018;53:13713–8.

    Article  CAS  Google Scholar 

  21. Bowmaker GA, et al. Solvent-assisted mechanochemical synthesis of metal complexes. Dalt Trans. 2008;22:2926.

    Article  Google Scholar 

  22. Hutchings BP, et al. Feedback Kinetics in Mechanochemistry: the Importance of Cohesive States. Angew Chem Int Ed. 2017. https://doi.org/10.1002/anie.201706723.

    Article  Google Scholar 

  23. Achar TK, Bose A, Mal P. Mechanochemical synthesis of small organic molecules. Beilstein J Org Chem. 2017;13:1907–31.

    Article  CAS  Google Scholar 

  24. Miao YR, Suslick KS. Mechanochemical reactions of metal-organic frameworks. Adv Inorg Chem. 2018;71:403–34.

    Article  CAS  Google Scholar 

  25. Margetić D, Štrukil V. Mechanochemical organic synthesis. 1st ed. Amsterdam: Elsevier; 2016.

    Google Scholar 

  26. Leonardi M, Villacampa M, Menéndez JC. Multicomponent mechanochemical synthesis. Chem. Sci. 2018;9:2042–64.

    Article  CAS  Google Scholar 

  27. Friscic T, Mottillo C, Titi HM. Mechanochemical for synthesis. Angew Chem Int Ed. 2019. https://doi.org/10.1002/anie.201906755.

    Article  Google Scholar 

  28. Do J, Friscic T. Mechanochemistry: a force of synthesis. ACS Cent Sci. 2016;3:13–9.

    Article  Google Scholar 

  29. Xu C, et al. Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem Commun. 2015;51:6698–713.

    Article  CAS  Google Scholar 

  30. Anastas P, Eghbali N. Green chemistry: principles and pratice. Green Chem Chem Sci. 2018;39:2042–64.

    Google Scholar 

  31. Piras CC, Fern S, De Borggraeve WM. Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 2019;1:937–47.

    Article  CAS  Google Scholar 

  32. Almeida AC, et al. Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: mechanochemical synthesis, characterization, thermal and solubility study. Thermochim Acta. 2020;685:1–10.

    Article  Google Scholar 

  33. Rišianová L, et al. Synthesis, structural characterization and biological activity of novel Knoevenagel condensates on DLD-1 human colon carcinoma. Bioorg Med Chem Lett. 2017;27:2345–9.

    Article  Google Scholar 

  34. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. 5th ed. Stamford: Cengage; 2015.

    Google Scholar 

  35. Kolev TM, et al. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. 2005;102:1069–79.

    Article  CAS  Google Scholar 

  36. Nascimento M, et al. Physical and morphological properties of hydroxypropyl methylcellulose fi lms with curcumin polymorphs. Food Hydrocoll. 2019;97:105217.

    Article  Google Scholar 

  37. Xavier TS, et al. Molecular and biomolecular spectroscopy vibrational spectral investigations and density functional theory study of 4-formylbenzoic acid. Spectrochim Acta Part A. 2013;114:502–8.

    Article  CAS  Google Scholar 

  38. Guerra RG, et al. Thermal behaviour of curcumin. Braz J Therm Anal. 2012;1:19–23.

    Google Scholar 

  39. Chen Z, et al. Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem. 2014;155:81–6.

    Article  CAS  Google Scholar 

  40. Haisa BYM, et al. Topochemical studies. VIII. The crystal and molecular structures of two polymorphs of 4-formylbenzoic acid. Acta Cryst. 1975;32:857–60.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (Proc. Nos. 2018/24378-6, 2018/14506-7 and 2018/12463-9) e CNPq (Proc. Nos. 421469/2016-1 and 302769/2018-8) and to CEPID- CDMF laboratory (Proc. FAPESP No. 2013/07296-2) for the X-ray Powder Diffraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Junior Caires.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, A., Gaglieri, C., da Silva-Filho, L.C. et al. Mechanochemical synthesis, characterization and thermoanalytical study of a new curcumin derivative. J Therm Anal Calorim 146, 587–594 (2021). https://doi.org/10.1007/s10973-020-10000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10000-w

Keywords

Navigation