Skip to main content

Advertisement

Log in

Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cocrystals have wide applicability in the field of pharmaceutical sciences, promoting improvements in the physicochemical properties of the drugs. Trans-cinnamic acid (TCA) is a secondary plant metabolite, which has several pharmacological activities and presents as an intrinsic characteristic of low aqueous solubility. The aim of this work was the preparation, characterization and evaluation of solubility of TCA cocrystals. The cocrystals were prepared in 1:1 molar ratio of TCA and coformers, employing the solvent evaporation method. The samples were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The solubility of cocrystals was evaluated by shaker-flask method for 24 h. PXRD data showed the potential formation of three cocrystals, from the appearance of new peaks in the diffraction pattern and discarded the occurrence of polymorphism due to no changes in the crystalline pattern. DSC curves showed that the possibility of potential cocrystals formation is associated with a decrease in the melting temperature of the raw materials isolated in the samples, and the FTIR spectroscopy showed changes in the vibration frequencies of the possible functional groups involved in hydrogen bonding. SEM images showed changes in TCA morphology and coformers in cocrystals. Moreover, the solubility of cocrystals showed a significant increase in the aqueous media. The results showed that it is possible to improve aqueous solubility by obtaining cocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem. 2012;12(8):749–67. https://doi.org/10.2174/138955712801264792.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma P. Cinnamic acid derivatives: a new chapter of various pharmacological activities. J Chem Pharm Res. 2011;3(3):403–23.

    CAS  Google Scholar 

  3. Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules. 2014;19(7):9655–74. https://doi.org/10.3390/molecules19079655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guzman JD. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19(12):19292–349. https://doi.org/10.3390/molecules191219292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lima TC, Ferreira AR, Silva DF, Lima EO, de Sousa DP. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat Prod Res. 2018;32(5):572–5. https://doi.org/10.1080/14786419.2017.1317776.

    Article  CAS  PubMed  Google Scholar 

  6. De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents: a review. Curr Med Chem. 2011;18(11):1672–703. https://doi.org/10.2174/092986711795471347.

    Article  CAS  PubMed  Google Scholar 

  7. Su P, Shi Y, Wang J, Shen X, Zhang J. Anticancer agents derived from natural cinnamic acids. Anticancer Agents Med Chem. 2015;15(8):980–7. https://doi.org/10.2174/1871520615666150130111120.

    Article  CAS  PubMed  Google Scholar 

  8. Ekmekcioglu C, Feyertag J, Marktl W. Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett. 1998;128(2):137–44. https://doi.org/10.1016/s0304-3835(98)00073-1.

    Article  CAS  PubMed  Google Scholar 

  9. Hoskins JA. The occurrence, metabolism and toxicity of cinnamic acid and related compounds. J Appl Toxicol. 1984;4(6):283–92. https://doi.org/10.1002/jat.2550040602.

    Article  CAS  PubMed  Google Scholar 

  10. Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl. 1995;34(21):2311–27. https://doi.org/10.1002/anie.199523111.

    Article  CAS  Google Scholar 

  11. Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun. 2016;52(54):8342–60. https://doi.org/10.1039/c6cc02943d.

    Article  CAS  Google Scholar 

  12. Sun CC. Cocrystallization for successful drug delivery. Expert Opin Drug Deliv. 2013;10(2):201–13. https://doi.org/10.1517/17425247.2013.747508.

    Article  CAS  PubMed  Google Scholar 

  13. Duggirala NK, Perry ML, Almarsson O, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016;52(4):640–55. https://doi.org/10.1039/c5cc08216a.

    Article  CAS  Google Scholar 

  14. Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Commun. 2004;17:1889–96. https://doi.org/10.1039/b402150a.

    Article  CAS  Google Scholar 

  15. Shan N, Perry ML, Weyna DR, Zaworotko MJ. Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics. Expert Opin Drug Metab Toxicol. 2014;10(9):1255–71. https://doi.org/10.1517/17425255.2014.942281.

    Article  CAS  PubMed  Google Scholar 

  16. Rocha ABO, Kuminek G, Machado TC, Rosa J, Rauber GS, Borba PA, et al. Cocristais: uma estratégia promissora na área farmacêutica. Quim Nova. 2016. https://doi.org/10.21577/0100-4042.20160139.

    Article  Google Scholar 

  17. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodriguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101–25. https://doi.org/10.1016/j.ijpharm.2012.10.043.

    Article  CAS  PubMed  Google Scholar 

  18. Moradiya HG, Islam MT, Halsey S, Maniruzzaman M, Chowdhry BZ, Snowden MJ, et al. Continuous cocrystallisation of carbamazepine and trans-cinnamic acid via melt extrusion processing. CrystEngComm. 2014;16(17):3573–83. https://doi.org/10.1039/c3ce42457j.

    Article  CAS  Google Scholar 

  19. Ali HR, Alhalaweh A, Velaga SP. Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin. Drug Dev Ind Pharm. 2013;39(5):625–34. https://doi.org/10.3109/03639045.2012.671831.

    Article  CAS  PubMed  Google Scholar 

  20. Sarcevica I, Orola L, Veidis MV, Podjava A, Belyakov S. Crystal and molecular structure and stability of isoniazid cocrystals with selected carboxylic acids. Cryst Growth Des. 2013;13(3):1082–90. https://doi.org/10.1021/cg301356h.

    Article  CAS  Google Scholar 

  21. Stanton MK, Bak A. Physicochemical properties of pharmaceutical co-crystals: a case study of ten AMG 517 co-crystals. Cryst Growth Des. 2008;8(10):3856–62. https://doi.org/10.1021/cg800173d.

    Article  CAS  Google Scholar 

  22. Chaves Júnior JV, dos Santos JAB, Lins TB, de Araújo Batista RS, de Lima Neto SA, de Santana Oliveira A, et al. A new ferulic acid-nicotinamide cocrystal with improved solubility and dissolution performance. J Pharm Sci. 2020;109(3):1330–7. https://doi.org/10.1016/j.xphs.2019.12.002.

    Article  CAS  PubMed  Google Scholar 

  23. Lorenzo DA, Forrest SJ, Sparkes HA. Crystal engineering: co-crystals of cinnamic acid derivatives with a pyridyl derivative co-crystallizer. Acta crystallogr Sect B Struct Sci Cryst Eng Mater. 2016;72(Pt 1):87–95. https://doi.org/10.1107/S2052520615019678.

    Article  CAS  Google Scholar 

  24. Lin H-L, Huang Y-T, Lin S-Y. Spectroscopic and thermal approaches to investigate the formation mechanism of piroxicam–saccharin co-crystal induced by liquid-assisted grinding or thermal stress. J Therm Anal Calorim. 2016;123(3):2345–56. https://doi.org/10.1007/s10973-015-5058-2.

    Article  CAS  Google Scholar 

  25. Zhang S, Zhang J, Kou K, Jia Q, Xu Y, Zerraza S, et al. Investigation on the dissolution behavior of 2HNIW·HMX co-crystal prepared by a solvent/non-solvent method in N,N-dimethylformamide at T = (298.15–318.15) K. J Therm Anal Calorim. 2019;135(6):3363–73. https://doi.org/10.1007/s10973-018-7502-6.

    Article  CAS  Google Scholar 

  26. Porto DL, Leite GQ, Da Silva ARR, Souto AL, Gomes APB, de Souza FS, et al. Thermal characterization of antimicrobial peptide stigmurin employing thermal analytical techniques. J Therm Anal Calorim. 2019;138(5):3765–79. https://doi.org/10.1007/s10973-019-08737-0.

    Article  CAS  Google Scholar 

  27. Avula SGC, Alexander K, Riga A. Thermal analytical characterization of mixtures of antipsychotic drugs with various excipients for improved drug delivery. J Therm Anal Calorim. 2016;123(3):1981–92. https://doi.org/10.1007/s10973-015-4763-1.

    Article  CAS  Google Scholar 

  28. Harris KDM, Tremayne M, Kariuki BM. Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew Chem Int Ed. 2001;40(9):1626–51. https://doi.org/10.1002/1521-3773(20010504)40:9%3c1626:aid-anie16260%3e3.0.co;2-7.

    Article  CAS  Google Scholar 

  29. Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci. 2014;103(8):2330–7. https://doi.org/10.1002/jps.24048.

    Article  CAS  PubMed  Google Scholar 

  30. Suresh Kumar GS, Seethalakshmi PG, Bhuvanesh N, Kumaresan S. Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate. J Mol Struct. 2013;1050:88–96. https://doi.org/10.1016/j.molstruc.2013.07.018.

    Article  CAS  Google Scholar 

  31. Glomme A, März J, Dressman JB. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J Pharm Sci. 2005;94(1):1–16. https://doi.org/10.1002/jps.20212.

    Article  CAS  PubMed  Google Scholar 

  32. Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst Growth Des. 2015;15(3):1173–9. https://doi.org/10.1021/cg501532k.

    Article  CAS  Google Scholar 

  33. Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm. 2016;497(1–2):106–13. https://doi.org/10.1016/j.ijpharm.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  34. Sanphui P, Goud NR, Khandavilli UBR, Nangia A. Fast dissolving curcumin cocrystals. Cryst Growth Des. 2011;11(9):4135–45. https://doi.org/10.1021/cg200704s.

    Article  CAS  Google Scholar 

  35. Daurio D, Medina C, Saw R, Nagapudi K, Alvarez-Núñez F. Application of twin screw extrusion in the manufacture of cocrystals, part I: four case studies. Pharmaceutics. 2011;3(3):582–600.

    Article  CAS  Google Scholar 

  36. El-Gizawy SA, Osman MA, Arafa MF, El Maghraby GM. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int J Pharm. 2015;478(2):773–8. https://doi.org/10.1016/j.ijpharm.2014.12.037.

    Article  CAS  PubMed  Google Scholar 

  37. Lindfors L, Forssén S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2008;325(2):404–13. https://doi.org/10.1016/j.jcis.2008.05.034.

    Article  CAS  PubMed  Google Scholar 

  38. Nolasco MM, Amado AM, Ribeiro-Claro PJA. Effect of hydrogen bonding in the vibrational spectra of trans-cinnamic acid. J Raman Spectrosc. 2009;40(4):394–400. https://doi.org/10.1002/jrs.2138.

    Article  CAS  Google Scholar 

  39. Bučar D-K, Henry RF, Lou X, Duerst RW, Borchardt TB, MacGillivray LR, et al. Co-crystals of caffeine and hydroxy-2-naphthoic acids: unusual formation of the carboxylic acid dimer in the presence of a heterosynthon. Mol Pharm. 2007;4(3):339–46. https://doi.org/10.1021/mp070004b.

    Article  CAS  PubMed  Google Scholar 

  40. Chadha R, Bhalla Y, Nandan A, Chadha K, Karan M. Chrysin cocrystals: characterization and evaluation. J Pharm Biomed Anal. 2017;134:361–71. https://doi.org/10.1016/j.jpba.2016.10.020.

    Article  CAS  PubMed  Google Scholar 

  41. Nijhawan M, Santhosh A, Babu PRS, Subrahmanyam CVS. Solid state manipulation of lornoxicam for cocrystals—physicochemical characterization. Drug Dev Ind Pharm. 2014;40(9):1163–72. https://doi.org/10.3109/03639045.2013.804834.

    Article  CAS  PubMed  Google Scholar 

  42. Keramatnia F, Shayanfar A, Jouyban A. Thermodynamic solubility profile of carbamazepine–cinnamic acid cocrystal at different pH. J Pharm Sci. 2015;104(8):2559–65. https://doi.org/10.1002/jps.24525.

    Article  CAS  PubMed  Google Scholar 

  43. Pinto SS, Diogo HP. Thermochemical study of two anhydrous polymorphs of caffeine. J Chem Thermodyn. 2006;38(12):1515–22. https://doi.org/10.1016/j.jct.2006.04.008.

    Article  CAS  Google Scholar 

  44. Chow PS, Lau G, Ng WK, Vangala VR. Stability of pharmaceutical cocrystal during milling: a case study of 1:1 caffeine–glutaric acid. Cryst Growth Des. 2017;17(8):4064–71. https://doi.org/10.1021/acs.cgd.6b01160.

    Article  CAS  Google Scholar 

  45. Shimono K, Kadota K, Tozuka Y, Shimosaka A, Shirakawa Y, Hidaka J. Kinetics of co-crystal formation with caffeine and citric acid via liquid-assisted grinding analyzed using the distinct element method. Eur J Pharm Sci. 2015;76:217–24. https://doi.org/10.1016/j.ejps.2015.05.017.

    Article  CAS  PubMed  Google Scholar 

  46. Bruni G, Berbenni V, Maggi L, Mustarelli P, Friuli V, Ferrara C, et al. Multicomponent crystals of gliclazide and tromethamine: preparation, physico-chemical, and pharmaceutical characterization. Drug Dev Ind Pharm. 2018;44(2):243–50. https://doi.org/10.1080/03639045.2017.1386208.

    Article  CAS  PubMed  Google Scholar 

  47. Wöstheinrich K, Schmidt PC. Polymorphic changes of thiamine hydrochloride during granulation and tableting. Drug Dev Ind Pharm. 2001;27(6):481–9. https://doi.org/10.1081/DDC-100105172.

    Article  PubMed  Google Scholar 

  48. Al-Rashood KAM, Al-Shammary FJ, Mian NAA. Analytical profile of thiamine hydrochloride. In: Florey K, Al-Badr AA, Forcier GA, Brittain HG, Grady LT, editors. Analytical profiles of drug substances. Cambridge: Academic Press; 1990. p. 413–58.

    Google Scholar 

  49. Chakravarty P, Berendt RT, Munson EJ, Young VG, Govindarajan R, Suryanarayanan R. Insights into the dehydration behavior of thiamine hydrochloride (Vitamin B1) hydrates: part I. J Pharm Sci. 2010;99(2):816–27. https://doi.org/10.1002/jps.21876.

    Article  CAS  PubMed  Google Scholar 

  50. Bandari S, Dronam VR, Eedara BB. Development and preliminary characterization of levofloxacin pharmaceutical cocrystals for dissolution rate enhancement. J Pharm Investig. 2017;47(6):583–91. https://doi.org/10.1007/s40005-016-0302-8.

    Article  CAS  Google Scholar 

  51. Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 2011;12(2):693–704. https://doi.org/10.1208/s12249-011-9603-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Otsuka Y, Ito A, Takeuchi M, Tanaka H. Dry mechanochemical synthesis of caffeine/oxalic acid cocrystals and their evaluation by powder X-ray diffraction and chemometrics. J Pharm Sci. 2017;106(12):3458–64. https://doi.org/10.1016/j.xphs.2017.07.025.

    Article  CAS  PubMed  Google Scholar 

  53. Mota FL, Queimada AJ, Pinho SP, Macedo EA. Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res. 2008;47(15):5182–9. https://doi.org/10.1021/ie071452o.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding offered by Coordination of Improvement of Higher Level Personnel (CAPES) and National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cícero Flávio Soares Aragão.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, J.A.B., Chaves Júnior, J.V., de Araújo Batista, R.S. et al. Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid. J Therm Anal Calorim 145, 379–390 (2021). https://doi.org/10.1007/s10973-020-09708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09708-6

Keywords