Abstract
Cocrystals have wide applicability in the field of pharmaceutical sciences, promoting improvements in the physicochemical properties of the drugs. Trans-cinnamic acid (TCA) is a secondary plant metabolite, which has several pharmacological activities and presents as an intrinsic characteristic of low aqueous solubility. The aim of this work was the preparation, characterization and evaluation of solubility of TCA cocrystals. The cocrystals were prepared in 1:1 molar ratio of TCA and coformers, employing the solvent evaporation method. The samples were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The solubility of cocrystals was evaluated by shaker-flask method for 24 h. PXRD data showed the potential formation of three cocrystals, from the appearance of new peaks in the diffraction pattern and discarded the occurrence of polymorphism due to no changes in the crystalline pattern. DSC curves showed that the possibility of potential cocrystals formation is associated with a decrease in the melting temperature of the raw materials isolated in the samples, and the FTIR spectroscopy showed changes in the vibration frequencies of the possible functional groups involved in hydrogen bonding. SEM images showed changes in TCA morphology and coformers in cocrystals. Moreover, the solubility of cocrystals showed a significant increase in the aqueous media. The results showed that it is possible to improve aqueous solubility by obtaining cocrystals.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem. 2012;12(8):749–67. https://doi.org/10.2174/138955712801264792.
Sharma P. Cinnamic acid derivatives: a new chapter of various pharmacological activities. J Chem Pharm Res. 2011;3(3):403–23.
Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules. 2014;19(7):9655–74. https://doi.org/10.3390/molecules19079655.
Guzman JD. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19(12):19292–349. https://doi.org/10.3390/molecules191219292.
Lima TC, Ferreira AR, Silva DF, Lima EO, de Sousa DP. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat Prod Res. 2018;32(5):572–5. https://doi.org/10.1080/14786419.2017.1317776.
De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents: a review. Curr Med Chem. 2011;18(11):1672–703. https://doi.org/10.2174/092986711795471347.
Su P, Shi Y, Wang J, Shen X, Zhang J. Anticancer agents derived from natural cinnamic acids. Anticancer Agents Med Chem. 2015;15(8):980–7. https://doi.org/10.2174/1871520615666150130111120.
Ekmekcioglu C, Feyertag J, Marktl W. Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett. 1998;128(2):137–44. https://doi.org/10.1016/s0304-3835(98)00073-1.
Hoskins JA. The occurrence, metabolism and toxicity of cinnamic acid and related compounds. J Appl Toxicol. 1984;4(6):283–92. https://doi.org/10.1002/jat.2550040602.
Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl. 1995;34(21):2311–27. https://doi.org/10.1002/anie.199523111.
Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun. 2016;52(54):8342–60. https://doi.org/10.1039/c6cc02943d.
Sun CC. Cocrystallization for successful drug delivery. Expert Opin Drug Deliv. 2013;10(2):201–13. https://doi.org/10.1517/17425247.2013.747508.
Duggirala NK, Perry ML, Almarsson O, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016;52(4):640–55. https://doi.org/10.1039/c5cc08216a.
Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Commun. 2004;17:1889–96. https://doi.org/10.1039/b402150a.
Shan N, Perry ML, Weyna DR, Zaworotko MJ. Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics. Expert Opin Drug Metab Toxicol. 2014;10(9):1255–71. https://doi.org/10.1517/17425255.2014.942281.
Rocha ABO, Kuminek G, Machado TC, Rosa J, Rauber GS, Borba PA, et al. Cocristais: uma estratégia promissora na área farmacêutica. Quim Nova. 2016. https://doi.org/10.21577/0100-4042.20160139.
Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodriguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101–25. https://doi.org/10.1016/j.ijpharm.2012.10.043.
Moradiya HG, Islam MT, Halsey S, Maniruzzaman M, Chowdhry BZ, Snowden MJ, et al. Continuous cocrystallisation of carbamazepine and trans-cinnamic acid via melt extrusion processing. CrystEngComm. 2014;16(17):3573–83. https://doi.org/10.1039/c3ce42457j.
Ali HR, Alhalaweh A, Velaga SP. Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin. Drug Dev Ind Pharm. 2013;39(5):625–34. https://doi.org/10.3109/03639045.2012.671831.
Sarcevica I, Orola L, Veidis MV, Podjava A, Belyakov S. Crystal and molecular structure and stability of isoniazid cocrystals with selected carboxylic acids. Cryst Growth Des. 2013;13(3):1082–90. https://doi.org/10.1021/cg301356h.
Stanton MK, Bak A. Physicochemical properties of pharmaceutical co-crystals: a case study of ten AMG 517 co-crystals. Cryst Growth Des. 2008;8(10):3856–62. https://doi.org/10.1021/cg800173d.
Chaves Júnior JV, dos Santos JAB, Lins TB, de Araújo Batista RS, de Lima Neto SA, de Santana Oliveira A, et al. A new ferulic acid-nicotinamide cocrystal with improved solubility and dissolution performance. J Pharm Sci. 2020;109(3):1330–7. https://doi.org/10.1016/j.xphs.2019.12.002.
Lorenzo DA, Forrest SJ, Sparkes HA. Crystal engineering: co-crystals of cinnamic acid derivatives with a pyridyl derivative co-crystallizer. Acta crystallogr Sect B Struct Sci Cryst Eng Mater. 2016;72(Pt 1):87–95. https://doi.org/10.1107/S2052520615019678.
Lin H-L, Huang Y-T, Lin S-Y. Spectroscopic and thermal approaches to investigate the formation mechanism of piroxicam–saccharin co-crystal induced by liquid-assisted grinding or thermal stress. J Therm Anal Calorim. 2016;123(3):2345–56. https://doi.org/10.1007/s10973-015-5058-2.
Zhang S, Zhang J, Kou K, Jia Q, Xu Y, Zerraza S, et al. Investigation on the dissolution behavior of 2HNIW·HMX co-crystal prepared by a solvent/non-solvent method in N,N-dimethylformamide at T = (298.15–318.15) K. J Therm Anal Calorim. 2019;135(6):3363–73. https://doi.org/10.1007/s10973-018-7502-6.
Porto DL, Leite GQ, Da Silva ARR, Souto AL, Gomes APB, de Souza FS, et al. Thermal characterization of antimicrobial peptide stigmurin employing thermal analytical techniques. J Therm Anal Calorim. 2019;138(5):3765–79. https://doi.org/10.1007/s10973-019-08737-0.
Avula SGC, Alexander K, Riga A. Thermal analytical characterization of mixtures of antipsychotic drugs with various excipients for improved drug delivery. J Therm Anal Calorim. 2016;123(3):1981–92. https://doi.org/10.1007/s10973-015-4763-1.
Harris KDM, Tremayne M, Kariuki BM. Contemporary advances in the use of powder X-ray diffraction for structure determination. Angew Chem Int Ed. 2001;40(9):1626–51. https://doi.org/10.1002/1521-3773(20010504)40:9%3c1626:aid-anie16260%3e3.0.co;2-7.
Huang Y, Zhang B, Gao Y, Zhang J, Shi L. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci. 2014;103(8):2330–7. https://doi.org/10.1002/jps.24048.
Suresh Kumar GS, Seethalakshmi PG, Bhuvanesh N, Kumaresan S. Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate. J Mol Struct. 2013;1050:88–96. https://doi.org/10.1016/j.molstruc.2013.07.018.
Glomme A, März J, Dressman JB. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J Pharm Sci. 2005;94(1):1–16. https://doi.org/10.1002/jps.20212.
Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst Growth Des. 2015;15(3):1173–9. https://doi.org/10.1021/cg501532k.
Hiendrawan S, Veriansyah B, Widjojokusumo E, Soewandhi SN, Wikarsa S, Tjandrawinata RR. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid. Int J Pharm. 2016;497(1–2):106–13. https://doi.org/10.1016/j.ijpharm.2015.12.001.
Sanphui P, Goud NR, Khandavilli UBR, Nangia A. Fast dissolving curcumin cocrystals. Cryst Growth Des. 2011;11(9):4135–45. https://doi.org/10.1021/cg200704s.
Daurio D, Medina C, Saw R, Nagapudi K, Alvarez-Núñez F. Application of twin screw extrusion in the manufacture of cocrystals, part I: four case studies. Pharmaceutics. 2011;3(3):582–600.
El-Gizawy SA, Osman MA, Arafa MF, El Maghraby GM. Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. Int J Pharm. 2015;478(2):773–8. https://doi.org/10.1016/j.ijpharm.2014.12.037.
Lindfors L, Forssén S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2008;325(2):404–13. https://doi.org/10.1016/j.jcis.2008.05.034.
Nolasco MM, Amado AM, Ribeiro-Claro PJA. Effect of hydrogen bonding in the vibrational spectra of trans-cinnamic acid. J Raman Spectrosc. 2009;40(4):394–400. https://doi.org/10.1002/jrs.2138.
Bučar D-K, Henry RF, Lou X, Duerst RW, Borchardt TB, MacGillivray LR, et al. Co-crystals of caffeine and hydroxy-2-naphthoic acids: unusual formation of the carboxylic acid dimer in the presence of a heterosynthon. Mol Pharm. 2007;4(3):339–46. https://doi.org/10.1021/mp070004b.
Chadha R, Bhalla Y, Nandan A, Chadha K, Karan M. Chrysin cocrystals: characterization and evaluation. J Pharm Biomed Anal. 2017;134:361–71. https://doi.org/10.1016/j.jpba.2016.10.020.
Nijhawan M, Santhosh A, Babu PRS, Subrahmanyam CVS. Solid state manipulation of lornoxicam for cocrystals—physicochemical characterization. Drug Dev Ind Pharm. 2014;40(9):1163–72. https://doi.org/10.3109/03639045.2013.804834.
Keramatnia F, Shayanfar A, Jouyban A. Thermodynamic solubility profile of carbamazepine–cinnamic acid cocrystal at different pH. J Pharm Sci. 2015;104(8):2559–65. https://doi.org/10.1002/jps.24525.
Pinto SS, Diogo HP. Thermochemical study of two anhydrous polymorphs of caffeine. J Chem Thermodyn. 2006;38(12):1515–22. https://doi.org/10.1016/j.jct.2006.04.008.
Chow PS, Lau G, Ng WK, Vangala VR. Stability of pharmaceutical cocrystal during milling: a case study of 1:1 caffeine–glutaric acid. Cryst Growth Des. 2017;17(8):4064–71. https://doi.org/10.1021/acs.cgd.6b01160.
Shimono K, Kadota K, Tozuka Y, Shimosaka A, Shirakawa Y, Hidaka J. Kinetics of co-crystal formation with caffeine and citric acid via liquid-assisted grinding analyzed using the distinct element method. Eur J Pharm Sci. 2015;76:217–24. https://doi.org/10.1016/j.ejps.2015.05.017.
Bruni G, Berbenni V, Maggi L, Mustarelli P, Friuli V, Ferrara C, et al. Multicomponent crystals of gliclazide and tromethamine: preparation, physico-chemical, and pharmaceutical characterization. Drug Dev Ind Pharm. 2018;44(2):243–50. https://doi.org/10.1080/03639045.2017.1386208.
Wöstheinrich K, Schmidt PC. Polymorphic changes of thiamine hydrochloride during granulation and tableting. Drug Dev Ind Pharm. 2001;27(6):481–9. https://doi.org/10.1081/DDC-100105172.
Al-Rashood KAM, Al-Shammary FJ, Mian NAA. Analytical profile of thiamine hydrochloride. In: Florey K, Al-Badr AA, Forcier GA, Brittain HG, Grady LT, editors. Analytical profiles of drug substances. Cambridge: Academic Press; 1990. p. 413–58.
Chakravarty P, Berendt RT, Munson EJ, Young VG, Govindarajan R, Suryanarayanan R. Insights into the dehydration behavior of thiamine hydrochloride (Vitamin B1) hydrates: part I. J Pharm Sci. 2010;99(2):816–27. https://doi.org/10.1002/jps.21876.
Bandari S, Dronam VR, Eedara BB. Development and preliminary characterization of levofloxacin pharmaceutical cocrystals for dissolution rate enhancement. J Pharm Investig. 2017;47(6):583–91. https://doi.org/10.1007/s40005-016-0302-8.
Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 2011;12(2):693–704. https://doi.org/10.1208/s12249-011-9603-4.
Otsuka Y, Ito A, Takeuchi M, Tanaka H. Dry mechanochemical synthesis of caffeine/oxalic acid cocrystals and their evaluation by powder X-ray diffraction and chemometrics. J Pharm Sci. 2017;106(12):3458–64. https://doi.org/10.1016/j.xphs.2017.07.025.
Mota FL, Queimada AJ, Pinho SP, Macedo EA. Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res. 2008;47(15):5182–9. https://doi.org/10.1021/ie071452o.
Acknowledgements
The authors are grateful for the funding offered by Coordination of Improvement of Higher Level Personnel (CAPES) and National Council for Scientific and Technological Development (CNPq).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
dos Santos, J.A.B., Chaves Júnior, J.V., de Araújo Batista, R.S. et al. Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid. J Therm Anal Calorim 145, 379–390 (2021). https://doi.org/10.1007/s10973-020-09708-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-020-09708-6