Skip to main content
Log in

MHD forced convection of nanofluid flow in an open-cell metal foam heatsink under LTNE conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, nanofluid forced convective heat transfer through an open-cell metal foam heatsink under a uniform heat flux, numerically has been investigated. A uniform magnetic field has been applied to the nanofluid flow. For the momentum equation, Darcy–Brinkman model and, for the energy equation, two-equation model under the condition of fully developed from the thermal and hydrodynamical standpoints have been used. In recent study, by utilizing a numerical method, an attempt was made to avoid a complete and complex CFD approach. To validate the results, the dimensionless parameters such as non-dimensional velocity and temperature, pressure gradient and Nusselt number have been compared with previous researches and a good agreement appeared. Eventually, the effects of different dimensionless parameters such as porosity, Hartman number, nanofluid volume fraction, Reynolds number, thermal conductivity ratio and pore density on the hydrodynamical and thermal characteristics of heatsink have been investigated. The outcomes show that the rise of pore density and Hartman number and the decline of the porosity will enhance the thermal performance; however, it also will reinforce the resistance to the flow through the porous media. Focusing on results illustrates that Nusselt number variation for increasing porosity from 0.85 to 0.95 at the minimum and maximum of the pore density are \(\left( {\Delta {\text{Nu}}_{{\left(\upvarepsilon \right)}} } \right)_{{\upomega = 10}} = - 331.7\) and \(\left( {\Delta {\text{Nu}}_{{\left(\upvarepsilon \right)}} } \right)_{\omega = 60} = - 367.8\), and these values for friction factor are equal to \(\left( {\Delta f_{{\left(\upvarepsilon \right)}} } \right)_{{\upomega = 10}} = - 22.3\) and \(\left( {\Delta f_{{\left(\upvarepsilon \right)}} } \right)_{{\upomega = 60}} = - 793\), respectively. On the other hand, increasing Hartman number from 0 to 100 would change the Nusselt number and friction factor as \(\left( {\Delta {\text{Nu}}_{{\left( {\text{Ha}} \right)}} } \right)_{{\upomega = 10}} = 9.4\), \(\left( {\Delta {\text{Nu}}_{{\left( {\text{Ha}} \right)}} } \right)_{{\upomega = 60}} = 0.2\), \(\left( {\Delta f_{{\left( {\text{Ha}} \right)}} } \right)_{{\upomega = 10}} = 213\), and \(\left( {\Delta f_{{\left( {\text{Ha}} \right)}} } \right)_{{\upomega = 60}} = 211\), respectively. The amount of Hartman and Reynolds numbers effects on the heat transfer rate depends on the pore density. In other words, when the pore density becomes saturated, the effects of these parameters decrease. In addition, the use of nanofluid will improve the heatsink thermal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A_{\text{sf}}\) :

Specific surface area (m−1)

B :

Magnetic field (T)

Bi:

Biot number

\(c_{\text{p}}\) :

Specific heat (J kg−1 K−1)

Da:

Darcy number

\(d_{\text{f}}\) :

Fiber diameter (m)

\(d_{\text{p}}\) :

Pore diameter (m)

f :

Friction factor

H :

Half height of heatsink (m)

\(h_{\text{sf}}\) :

Interstitial heat transfer coefficient (W m−2 K−1)

Ha:

Hartmann number

k :

Thermal conductivity (W m−1K−1)

K :

Permeability (m2)

L :

Length of heatsink (m)

p :

Pressure (Pa)

P :

Dimensionless pressure

Pr:

Prandtl number

\(q^{\prime\prime}\) :

Heat flux (W m−2)

Re:

Reynolds number

T :

Temperature (K)

\(T_{\text{in}}\) :

Inlet temperature (K)

\(T_{\text{w}}\) :

Wall temperature (K)

u, v :

x-, y-direction velocity (m s−1)

u m :

Average inlet velocity (m s−1)

U :

Dimensionless velocity

x, y :

Cartesian coordinates (m)

Y :

Dimensionless y-coordinate

\(\gamma\) :

Magnetic angle (rad)

\(\varepsilon\) :

Porosity

\(\omega\) :

Pore density, PPI (pores per in.)

\(\sigma\) :

Electrical conductivity \(\left( {\Omega {\text{m}}} \right)^{ - 1}\)

\(\varphi\) :

Nanoparticle volume fraction

\(\mu\) :

Dynamic viscosity (Pa s)

\(\theta\) :

Dimensionless temperature

\(\rho\) :

Density (kg m−3)

b:

Bulk

bf:

Base fluid

e:

Effective

f:

Fluid phase

nf:

Nanofluid

np:

Nanoparticle

s:

Solid phase

References

  1. Siavashi M, Joibary SMM. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media. J Therm Anal Calorim. 2019;135:1595–610.

    CAS  Google Scholar 

  2. Izadi A, Siavashi M, Rasam H, Xiong Q. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling. Appl Therm Eng. 2020;168:114843.

    CAS  Google Scholar 

  3. Joibary SMM, Siavashi M. Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement. J Therm Anal Calorim. 2019;1–15.

  4. Pourrahmani H, Moghimi M, Siavashi M, Shirbani M. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl Therm Eng. 2019;150:433–44.

    Google Scholar 

  5. Moosaie A, Shekouhi N, Nouri N, Manhart M. An algebraic closure model for the DNS of turbulent drag reduction by Brownian microfiber additives in a channel flow. J Non-Newton Fluid Mech. 2015;226:60–6.

    CAS  Google Scholar 

  6. Norouzi AM, Siavashi M, Soheili AR, Oskouei MK. Experimental investigation of effects of grain size, inlet pressure and flow rate of air and argon on pressure drop through a packed bed of granular activated carbon. Int Commun Heat Mass Transf. 2018;96:20–6.

    CAS  Google Scholar 

  7. Kim SY, Paek JW, Kang BH. Thermal performance of aluminum-foam heat sinks by forced air cooling. IEEE Trans Compon Packag Technol. 2003;26:262–7.

    CAS  Google Scholar 

  8. Wang T, Luan W, Liu T, Tu S-T, Yan J. Performance enhancement of thermoelectric waste heat recovery system by using metal foam inserts. Energy Convers Manag. 2016;124:13–9.

    Google Scholar 

  9. Dukhan N, Chen K-C. Heat transfer measurements in metal foam subjected to constant heat flux. Exp Therm Fluid Sci. 2007;32:624–31.

    CAS  Google Scholar 

  10. Wan Z, Guo G, Su K, Tu Z, Liu W. Experimental analysis of flow and heat transfer in a miniature porous heat sink for high heat flux application. Int J Heat Mass Transf. 2012;55:4437–41.

    CAS  Google Scholar 

  11. Hajipour M, Dehkordi AM. Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Exp Therm Fluid Sci. 2014;53:49–56.

    CAS  Google Scholar 

  12. Sopian K, Daud WRW, Othman MY, Yatim B. Thermal performance of the double-pass solar collector with and without porous media. Renew Energy. 1999;18:557–64.

    Google Scholar 

  13. Rabbani P, Hamzehpour A, Ashjaee M, Najafi M, Houshfar E. Experimental investigation on heat transfer of MgO nanofluid in tubes partially filled with metal foam. Powder Technol. 2019;354:734–42.

    CAS  Google Scholar 

  14. Ali HM. Experimental study on the thermal behavior of RT-35HC paraffin within copper and Iron-Nickel open cell foams: Energy storage for thermal management of electronics. Int J Heat Mass Transf. 2020;146:118852.

    Google Scholar 

  15. Kim DY, Nematollahi O, Kim KC. Flow-pattern-based experimental analysis of convective boiling heat transfer in a rectangular channel filled with open-cell metallic random porous media. Int J Heat Mass Transf. 2019;142:118402.

    CAS  Google Scholar 

  16. Awin Y, Dukhan N. Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells. Appl Energy. 2019;252:113458.

    CAS  Google Scholar 

  17. Siavashi M, Ghasemi K, Yousofvand R, Derakhshan S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol Energy. 2018;170:252–62.

    CAS  Google Scholar 

  18. Chuan L, Wang X-D, Wang T-H, Yan W-M. Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept. Int Commun Heat Mass Transf. 2015;65:52–7.

    Google Scholar 

  19. Rong F, Shi B, Cui X. Lattice Boltzmann simulation of heat and fluid flow in 3D cylindrical heat exchanger with porous blocks. Appl Math Comput. 2016;276:367–78.

    Google Scholar 

  20. Xu Z, Gong Q. Numerical investigation on forced convection of tubes partially filled with composite metal foams under local thermal non-equilibrium condition. Int J Therm Sci. 2018;133:1–12.

    Google Scholar 

  21. Bovand M, Rashidi S, Esfahani JA. Heat transfer enhancement and pressure drop penalty in porous solar heaters: numerical simulations. Sol Energy. 2016;123:145–59.

    Google Scholar 

  22. Xu H, Gong L, Huang S, Xu M. Flow and heat transfer characteristics of nanofluid flowing through metal foams. Int J Heat Mass Transf. 2015;83:399–407.

    Google Scholar 

  23. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont, IL: Argonne National Laboratory; 1995.

    Google Scholar 

  24. Norouzi AM, Siavashi M, Oskouei MK. Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles. Renew Energy. 2020;145:569–84.

    CAS  Google Scholar 

  25. Siavashi M, Iranmehr S. Using sharp wedge-shaped porous media in front and wake regions of external nanofluid flow over a bundle of cylinders. Int J Numer Methods Heat Fluid Flow. 2019;29(10):3730–55.

    Google Scholar 

  26. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows—part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    CAS  Google Scholar 

  27. Mohebbi R, Rasam H, Numerical simulation of conjugate heat transfer in a square cavity consisting the conducting partitions using the lattice Boltzmann method. Phys A: Stat Mech Appl. 2019;123050.

  28. Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol. 2018;325:78–91.

    CAS  Google Scholar 

  29. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrogen Energy. 2019;44:15933–48.

    CAS  Google Scholar 

  30. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135:1399–415.

    CAS  Google Scholar 

  31. Ting TW, Hung YM, Guo N. Viscous dissipative nanofluid convection in asymmetrically heated porous microchannels with solid-phase heat generation. Int Commun Heat Mass Transf. 2015;68:236–47.

    CAS  Google Scholar 

  32. Tong Y, Lee H, Kang W, Cho H. Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl Therm Eng. 2019;159:113959.

    CAS  Google Scholar 

  33. Xu H, Xing Z. The lattice Boltzmann modeling on the nanofluid natural convective transport in a cavity filled with a porous foam. Int Commun Heat Mass Transf. 2017;89:73–82.

    CAS  Google Scholar 

  34. Emami RY, Siavashi M, Moghaddam GS. The effect of inclination angle and hot wall configuration on Cu–water nanofluid natural convection inside a porous square cavity. Adv Powder Technol. 2018;29:519–36.

    Google Scholar 

  35. Sheikholeslami M, Ganji D. Heat transfer of Cu–water nanofluid flow between parallel plates. Powder Technol. 2013;235:873–9.

    CAS  Google Scholar 

  36. Xu HJ, Xing ZB, Wang F, Cheng Z. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem Eng Sci. 2019;195:462–83.

    CAS  Google Scholar 

  37. Khanafer K, Vafai K. Applications of nanofluids in porous medium. J Therm Anal Calorim. 2019;135:1479–92.

    CAS  Google Scholar 

  38. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2018;790:1–48.

    Google Scholar 

  39. Kabeel A, El-Said EM, Dafea S. A review of magnetic field effects on flow and heat transfer in liquids: present status and future potential for studies and applications. Renew Sustain Energy Rev. 2015;45:830–7.

    Google Scholar 

  40. Jahanbakhshi A, Nadooshan AA, Bayareh M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. J Therm Anal Calorim. 2018;133:1407–16.

    CAS  Google Scholar 

  41. Shahriari A, Ashorynejad HR, Pop I. Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. J Therm Anal Calorim. 2019;135:283–303.

    CAS  Google Scholar 

  42. Ma Y, Mohebbi R, Rashidi M, Yang Z. MHD forced convection of MWCNT–Fe3O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM. J Therm Anal Calorim. 2019;136:1723–35.

    CAS  Google Scholar 

  43. Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular cavity with an opening using Tiwari and Das’ nanofluid model. J Therm Anal Calorim. 2019;135:419–36.

    CAS  Google Scholar 

  44. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  45. Xu H, Qu Z, Tao W. Thermal transport analysis in parallel-plate channel filled with open-celled metallic foams. Int Commun Heat Mass Transf. 2011;38:868–73.

    CAS  Google Scholar 

  46. Mahmoudi Y, Maerefat M. Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int J Therm Sci. 2011;50:2386–401.

    Google Scholar 

  47. Xu H, Gong L, Huang S, Xu M. Non-equilibrium heat transfer in metal-foam solar collector with no-slip boundary condition. Int J Heat Mass Transf. 2014;76:357–65.

    Google Scholar 

  48. Sivaraj C, Sheremet MA. MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J Magn Magn Mater. 2017;426:351–60.

    CAS  Google Scholar 

  49. Shampine LF, Kierzenka J, Reichelt MW. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutor Notes. 2000;2000:1–27.

    Google Scholar 

  50. Lee D-Y, Vafai K. Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int J Heat Mass Transf. 1999;42:423–35.

    CAS  Google Scholar 

  51. Lu W, Zhao C, Tassou S. Thermal analysis on metal-foam filled heat exchangers. Part I: metal-foam filled pipes. Int J Heat Mass Transf. 2006;49:2751–61.

    Google Scholar 

  52. Xu Z, Qin J, Zhou X, Xu H. Forced convective heat transfer of tubes sintered with partially-filled gradient metal foams (GMFs) considering local thermal non-equilibrium effect. Appl Therm Eng. 2018;137:101–11.

    Google Scholar 

  53. Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf. 2001;44:827–36.

    CAS  Google Scholar 

  54. Qu Z, Xu H, Tao W. Fully developed forced convective heat transfer in an annulus partially filled with metallic foams: an analytical solution. Int J Heat Mass Transf. 2012;55:7508–19.

    CAS  Google Scholar 

  55. Begum AS, Nithyadevi N, Öztop HF, Al-Salem K. Numerical simulation of MHD mixed convection in a nanofluid filled non-Darcy porous enclosure. Int J Mech Sci. 2017;130:154–66.

    Google Scholar 

  56. Hussain S, Mehmood K, Sagheer M. MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating. J Magn Magn Mater. 2016;419:140–55.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rasam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, A., Abdipour, M. & Rasam, H. MHD forced convection of nanofluid flow in an open-cell metal foam heatsink under LTNE conditions. J Therm Anal Calorim 141, 1847–1857 (2020). https://doi.org/10.1007/s10973-020-09478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09478-1

Keywords

Navigation