Skip to main content
Log in

Thermal analysis of heat pump systems using photovoltaic-thermal collectors: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, the thermal analyses of heat pump systems using photovoltaic-thermal collectors are reviewed. Initially, the energy balance equations used for modelling the photovoltaic-thermal collectors are described. Further, the equations used for evaluating the thermodynamic performance of heat pump systems are listed. Then, the reviews of reported investigations on thermal analysis of heat pumps using photovoltaic-thermal collectors are presented. The studies reported in the open literature are grouped into six major sections such as photovoltaic-thermal air collectors, photovoltaic-thermal liquid collectors, direct expansion photovoltaic-thermal collectors, photovoltaic-thermal collectors as condensers, control of heat pumps using renewable energy and future environmentally friendly refrigerant options. The performances of the various photovoltaic-thermal collector configurations are described. The major limitations associated with existing configurations are identified, and further research scopes in this field are listed. Finally, this paper concludes that the heat pump systems using photovoltaic-thermal collectors are having good potential for drying, water heating and space heating applications. The information presented in this paper is more beneficial to the researchers working on heat pump systems using photovoltaic-thermal collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

a :

Diode ideality factor

c :

Specific heat (kJ kg−1 K−1)

D :

Diameter (m)

ex:

Specific exergy (kJ kg−1)

\( {\dot{\text{E}}\text{x}} \) :

Exergy rate (kW)

E :

Energy consumption of the compressor per day (kWh)

e gap :

Band gap of the material (1.17 eV for Si materials)

G :

Global solar radiation (W m−2)

I :

Current heat transfer coefficient (W m−2 K−1)

h :

Enthalpy (kJ kg−1)

L :

Refrigerant leakage from the system (%)

k :

Thermal conductivity (W m−1 K−1)

K :

Boltzmann constant

\( \dot{m} \) :

Mass flow rate (kg s−1)

m :

Mass of refrigerant used in the system (kg)

M :

Mass (kg)

n :

Running time (h)

N s :

Number of cells in series of the photovoltaic module

N :

Speed of compressor (rpm); life of the system (years)

s :

Specific entropy (kJ kg−1 K−1)

Q :

Heat transfer (W)

q :

Electron charge (assumed as 1.60217733 × 10−19 °C)

R :

Resistance

T :

Temperature (°C or K)

t :

Time

\( \dot{W} \) :

Compressor power consumption (W)

v :

Wind velocity (m·s-1)

α :

Absorption coefficient; refrigerant recycling factor

β :

Carbon dioxide emission factor (kg of CO2 kWh−1)

ϵ :

Emissivity

µ I,SC :

Temperature coefficient of short-circuit current (A °C−1)

τ :

Transmission coefficient

σ :

Stefan–Boltzman constant (5.68 × 10−8 W m−2 K−4)

δ :

Thickness (m)

η :

Efficiency (%)

χ i :

Relative irreversibility

PV-T:

Photovoltaic-thermal

PV:

Photovoltaic

GWP:

Global warming potential

COP:

Coefficient of performance

SMER:

Specific moisture extraction rate

SEIPR:

Solar energy input ratio

0:

Dead state

1–4:

Adhesive

ad:

State of refrigerants at typical locations in heat pump circuit (Fig. 3)

a:

Ambient

ad:

Adhesive

ap:

Absorber plate

ap-t:

Absorber plate to tube

ap-i:

Absorber plate to insulation

cond, o:

Condenser outlet

cond, i:

Condenser inlet

comp:

Compressor

cond:

Condenser

C:

Collector

c:

Cell

c, ref:

Cell, reference

c, g-a:

Convective glass to ambient

c, i-a:

Convection, insulation-ambient

conv:

Convection

d:

Diode

dis:

Displacement

D:

Diode

ev:

Expansion valve

ele:

Electrical

eva:

Evaporator

f:

Fluid

g:

Glass

g-pv:

Glass to photovoltaic cell

in:

Inlet

i:

Insulation, number of components

i-t:

Insulation tube

l:

Light

L:

Light

L, ref:

Light, reference

m:

Maximum

mech:

Mechanical

mp:

Maximum power point

oc:

Open circuit

o:

Overall

o, ref:

Saturation at reference condition

out:

Outlet

pv:

Photovoltaic

pl:

Plate

pv-t:

Photovoltaic-thermal

r:

Refrigerants

r-g-a:

Radiative glass–ambient

r-i-a:

Radiation, insulation-ambient

rad:

Radiation

ref:

Reference condition (solar irradiation = 1000 W m−2; cell temperature 298 K)

sc:

Short circuit

sc-ref:

Short circuit–eference

s:

Series

t:

Tube

t-r:

Tube–refrigerant

the:

Thermal

vol:

Volumetric

References

  1. Singh GK. Solar power generation by PV (photovoltaic) technology: a review. Energy. 2013;53:1–13.

    Google Scholar 

  2. Chow TT. A review on photovoltaic/thermal hybrid solar technology. Appl Energy. 2010;87:365–79.

    CAS  Google Scholar 

  3. Kern Jr EC, Russell MC. Combined photovoltaic and thermal hybrid collector systems. In: Proceedings of 13th IEEE PV specialist conference, Washington, DC 5–8. 1978. p. 1153–7.

  4. Tyagi VV, Kaushika SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew Sustain Energy Rev. 2012;16:1383–98.

    Google Scholar 

  5. Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT. Photovoltaic/thermal (PV/T) systems: status and future prospects. Renew Sustain Energy Rev. 2017;77:109–30.

    Google Scholar 

  6. Das D, Kalita P, Roy O. Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development. Renew Sustain Energy Rev. 2018;84:111–30.

    Google Scholar 

  7. Sultan SM, Ervina Efzan MN. Review on recent photovoltaic/thermal (PV/T) technology advances and applications. Sol Energy. 2018;173:939–54.

    Google Scholar 

  8. Jia Y, Alva G, Fang G. Development and applications of photovoltaic-thermal systems: a review. Renew Sustain Energy Rev. 2019;102:249–65.

    Google Scholar 

  9. Sporn P, Ambrose ER. The heat pump and solar energy. In: Proceedings of the world symposium on applied solar energy, Phoenix, AZ. 1955.

  10. Chua KJ, Chou SK, Yang WM. Advances in heat pump systems: a review. Appl Energy. 2010;87:3611–24.

    CAS  Google Scholar 

  11. Daghigh R, Ruslan MH, Sulaiman MY, Sopian K. Review of solar assisted heat pump drying systems for agricultural and marine products. Renew Sustain Energy Rev. 2010;14:2564–79.

    CAS  Google Scholar 

  12. Austin BT, Sumathy K. Trans-critical carbon dioxide heat pump systems: a review. Renew Sustain Energy Rev. 2011;15:4013–29.

    CAS  Google Scholar 

  13. Omojaro P, Breitkopf C. Direct expansion solar assisted heat pumps: a review of applications and recent research. Renew Sustain Energy Rev. 2013;22:33–45.

    Google Scholar 

  14. Kamel RS, Fung AS, Dash PRH. Solar systems and their integration with heat pumps: a review. Energy Build. 2015;87:395–412.

    Google Scholar 

  15. Buker MS, Riffat SB. Solar assisted heat pump systems for low temperature water heating applications: a systematic review. Renew Sustain Energy Rev. 2016;55:399–413.

    Google Scholar 

  16. Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A. Research and developments on solar assisted compression heat pump systems—a comprehensive review (part-A: modeling and modifications). Renew Sustain Energy Rev. 2018;83:90–123.

    Google Scholar 

  17. Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A. Research and developments on solar assisted compression heat pump systems—a comprehensive review (part-B: applications). Renew Sustain Energy Rev. 2018;83:124–55.

    Google Scholar 

  18. Shi G-H, Aye L, Li D, Du X-J. Recent advances in direct expansion solar assisted heat pump systems: a review. Renew Sustain Energy Rev. 2019;109:349–66.

    Google Scholar 

  19. Nouri G, Noorollahi Y, Yousefi H. Solar assisted ground source heat pump systems—a review. Appl Therm Eng. 2019;163:114351.

    Google Scholar 

  20. Chow TT. Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Sol Energy. 2003;75:143–52.

    Google Scholar 

  21. Chenni RÃ, Makhlouf M, Kerbache T, Bouzid A. A detailed modeling method for photovoltaic cells. Energy. 2007;32:1724–30.

    CAS  Google Scholar 

  22. Xu G, Zhang X, Deng S. A simulation study on the operating performance of a solar–air source heat pump water heater. Appl Therm Eng. 2006;26:1257–65.

    CAS  Google Scholar 

  23. Kim S-M, Mudawar I. Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels—part-II. Two phase heat transfer coefficient. Int. J. Heat Mass Transf. 2013;64:1239–56.

    CAS  Google Scholar 

  24. Cerrantes JG, Torres-Reyes E. Experiments on a solar-assisted heat pump and an exergy analysis of the system. Appl Therm Eng. 2002;22:1289–97.

    Google Scholar 

  25. Lokesh P, Mohanraj M, Jayaraj S, Srinivas M. Exergy analysis direct expansion solar assisted heat pumps working with R22 and R433A. J Therm Anal Calorim. 2018;134:2223–37.

    Google Scholar 

  26. Mohanraj M, Jayaraj S, Muraleedharan C. Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks. Int J Energy Res. 2009;33:1005–20.

    CAS  Google Scholar 

  27. Abraham JDAP, Mohanraj M. Thermodynamic performance of automobile air conditioners working with R430A as drop-in substitute to R134a. J Therm Anal Calorim. 2019;136:2071–86.

    Google Scholar 

  28. Hepbasli A. A key review on exergy analysis and assessment of renewable energy resources for sustainable future. Renew Energy Sustain Energy Rev. 2008;12:593–661.

    Google Scholar 

  29. Dhillon BS. Life cycle costing for engineers. Boca Raton: CRC Press; 2010.

    Google Scholar 

  30. Davies TW, Caretta O. A low carbon low TEWI refrigeration system design. Appl Therm Eng. 2004;24:1119–28.

    CAS  Google Scholar 

  31. Badescu V. Model of a space heating system integrating a heat pump, photothermal collectors and solar cells. Renew Energy. 2002;27:489–505.

    CAS  Google Scholar 

  32. Mortezapour H, Ghobadian B, Minaei S, Khoshtaghaza MH. Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Dry Technol. 2012;30(6):560–6.

    CAS  Google Scholar 

  33. Şevik S. Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behaviour of selected products. Sol Energy. 2014;105:190–205.

    Google Scholar 

  34. Baljit SSS, Chan H-Y, Sopian K. Review of building integrated applications of photovoltaic and solar thermal systems. J Clear Prod. 2016;137:677–89.

    Google Scholar 

  35. Zhao X, Zhang X, Riffat SB, Su Y. Theoretical study of the performance of a novel PV/e roof module for heat pump operation. Energy Convers Manag. 2011;52:603–14.

    CAS  Google Scholar 

  36. Cao C, Li H, Feng G, Zhang R, Huang K. Research on PV/T—air source heat pump integrated heating system in severe cold region. Procedia Eng. 2016;146:410–4.

    Google Scholar 

  37. Manzolini G, Colombo LPM, Romare S, Fustinoni D. Tile as solar air heater to support a heat pump for residential air conditioning. Appl Therm Eng. 2016;102:1412–21.

    Google Scholar 

  38. Bigaila E, Athienitis AK. Modeling and simulation of a photovoltaic/thermal air collector assisting a facade integrated small scale heat pump with radiant PCM panel. Energy Build. 2017;149:298–309.

    Google Scholar 

  39. Martin-Escudero K, Salazar-Herran E, Campos-Celador A, Diarce-Belloso G, Gomez-Arriaran I. Solar energy system for heating and domestic hot water supply by means of a heat pump coupled to a photovoltaic ventilated façade. Sol Energy. 2019;183:453–62.

    Google Scholar 

  40. Alam T, Saini RP, Salini JS. Use of turbulators for heat transfer augmentation in an air duct—a review. Renew Energy. 2014;62:689–715.

    Google Scholar 

  41. Nadda R, Kumar A, Maithani R. Efficiency improvement of solar photovoltaic/solar air collector by using impingement jets—a review. Renew Sustain Energy Rev. 2018;93:331–53.

    Google Scholar 

  42. Dagligh R, Ruslan MH, Sopian K. Advances in liquid based photovoltaic/thermal (PV/T) collectors. Renew Sustain Energy Rev. 2011;15:4156–70.

    Google Scholar 

  43. Izquierdo M, de Agustín-Camacho P, Martin E. A micro photovoltaic heat pump system for house heating by radiant floor: some experimental results. Energy Procedia. 2014;48:865–75.

    CAS  Google Scholar 

  44. Izquierdo M, de Agustín-Camacho P. Solar heating by radiant floor: experimental results and emission reduction obtained with a micro photovoltaic–heat pump system. Appl Energy. 2015;147:297–307.

    CAS  Google Scholar 

  45. Wang G, Quan Z, Zhao Y, Sun C, Sun C, Deng Y, Tong J. Experimental study on a novel PV/T air dual heat source composite heat pump hot water system. Energy Build. 2015;108:175–84.

    Google Scholar 

  46. Wang G, Quan Z, Zhao Y, Sun C, Tong J. Performance studies on a novel solar PV/T-air dual heat source heat pump system. Procedia Eng. 2015;121:771–8.

    Google Scholar 

  47. Wang G, Zhao Y, Quan Z, Tong J. Application of a multi-function solar heat pump system in residential buildings. Appl Therm Eng. 2018;130:922–37.

    Google Scholar 

  48. Bai Y, Chow TT, Meriezo C, Dupeyrat P. Analysis of a hybrid PV/Thermal solar assisted heat pump for sports centre water heating applications. Int J Photon Energy. 2012. https://doi.org/10.1155/2012/265838.

    Article  Google Scholar 

  49. Del Amo A, Martínez-Gracia A, Bayod-Rújula AA, Cañada M. Performance analysis and experimental validation of a solar-assisted heat pump fed by photovoltaic-thermal collectors. Energy. 2019;169:1214–23.

    Google Scholar 

  50. Vallati A, Ocłonc P, Colucci C, Mauri L, Vollaro RL, Taler J. Energy analysis of a thermal system composed by a heat pump coupled with a PVT solar collector. Energy. 2019;174:91–6.

    Google Scholar 

  51. Qu S, Ma F, Ji R, Wang D, Yang L. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage. Energy Build. 2015;105:294–301.

    Google Scholar 

  52. Fine JP, Friedman J, Dworkin SB. Detailed modeling of a novel photovoltaic thermal cascade heat pump domestic water heating system. Renew Energy. 2017;101:500–13.

    Google Scholar 

  53. Emmi G, Zarrella A, De Carli A. A heat pump coupled with photovoltaic thermal hybrid solar collectors: a case study of a multi-source energy system. Energy Convers Manag. 2017;151:386–99.

    Google Scholar 

  54. Sommerfeldt N, Madani H. In-depth techno-economic analysis of PV/Thermal plus ground source heat pump systems for multi-family houses in a heating dominated climate. Sol Energy. 2019;190:44–62.

    Google Scholar 

  55. Chen Y, Wang J, Ma C, Shi G. Multicriteria performance investigations of a hybrid ground source heat pump system integrated with concentrated photovoltaic thermal solar collectors. Energy Convers Manag. 2019;197:111862.

    Google Scholar 

  56. Wright AJ, Sakellariou EI, Axaopoulos P, Oyinlola A. PVT based solar assisted ground source heat pump system: modelling approach and sensitivity analyses. Sol Energy. 2019;193:37–50.

    Google Scholar 

  57. Xia L, Ma Z, Kokogiannakis G, Wang Z, Wang S. A model-based design optimization strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors. Appl Energy. 2018;214:178–90.

    Google Scholar 

  58. Foulds E, Abeysekera M, Wu J. Modeling and analysis of ground source heat pump combined with a PV-T and earth energy storage system. Energy Procedia. 2017;142:886–91.

    Google Scholar 

  59. Cai J, Quan Z, Li T, Hou L, Zhao Y, Yao M. Performance study of a novel hybrid solar PV-T ground source heat pump system. Procedia Eng. 2017;205:1642–9.

    Google Scholar 

  60. Chen H, Niu H, Zhang L, Xiong Y, Zhai H, Nie J. Performance testing of a heat pipe PV/T heat pump system under different working modes. Int J Low Carbon Technol. 2018;13:177–83.

    Google Scholar 

  61. Zhou J, Zhao X, Ma X, Du Z, Fan Y, Cheng Y, Zhang X. Clear-days operational performance of a hybrid experimental space heating system employing the novel mini-channel solar thermal & PV/T panels and a heat pump. Sol Energy. 2017;155:464–77.

    Google Scholar 

  62. Zhou J, Zhao X, Yuan Y, Li Y, Yu M, Fan Y. Operational performance of a novel heat pump coupled with mini-channel PV/T and thermal panel in low solar radiation. Energy Built Environ. 2020;1:50–9.

    Google Scholar 

  63. Zhang P, Rong X, Yang X, Zhang D. Design and performance simulation of a novel hybrid PV-T air dual source heat pump based on three fluid heat exchangers. Sol Energy. 2019;191:505–17.

    Google Scholar 

  64. Calise F, d’Accadia MD, Figaj RD, Vanoli L. A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: dynamic simulation and thermo-economical optimization. Energy. 2016;95:346–66.

    Google Scholar 

  65. Dannemand M, Perers B, Furbo S. Performance of a demonstration solar PVT assisted heat pump system with cold buffer storage and domestic hot water storage tanks. Energy Build. 2019;188:46–57.

    Google Scholar 

  66. Bellos E, Tzivanidis C, Nikolaou N. Investigation and optimization of a solar assisted heat pump driven by nanofluid-based hybrid PV. Energy Convers Manag. 2019;198:111831.

    CAS  Google Scholar 

  67. Bellos E, Tzivanidis C. Multi-objective optimization of a solar assisted heat pump-driven by hybrid PV. Appl Therm Eng. 2019;149:528–35.

    CAS  Google Scholar 

  68. Besagni G, Croci L, Nesa R, Molinaroli L. Field study of a novel solar-assisted dual-source multifunctional heat Pump. Renew Energy. 2019;132:1185–215.

    Google Scholar 

  69. Joshi SS, Dhoble AS. Photovoltaic-thermal systems (PV-T): technology and future trends. Renew Sustain Energy Rev. 2018;92:848–82.

    Google Scholar 

  70. Al-Shamani AN, Yazdi MH, Alghoul MA, Abed AM, Ruslan MH, Mat S, Sopian K. Nanofluids for improved efficiency in cooling of solar collectors—review. Renew Sustain Energy Rev. 2014;38:348–67.

    CAS  Google Scholar 

  71. Chow TT, Pei G, Fong KF, Lin Z, Chan ALS, Ji J. Potential use of photovoltaic-integrated solar heat pump system in Hong Kong. Appl Therm Eng. 2010;30:1066–72.

    CAS  Google Scholar 

  72. Fang G, Hu H, Liu X. Experimental investigation on the photovoltaic–thermal solar heat pump air-conditioning system on water-heating mode. Exp Thermal Fluid Sci. 2010;34:736–43.

    Google Scholar 

  73. Tsai H-L. Design and evaluation of a photovoltaic/thermal-assisted heat pump water heating system. Energies. 2014;7:3319–38.

    Google Scholar 

  74. Tsai H-L. Modeling and validation of refrigerant-based PVT-assisted heat pump water heating (PVTA–HPWH) system. Sol Energy. 2015;122:36–47.

    Google Scholar 

  75. Hu H, Wang R, Fang G. Dynamic characteristics modeling of a hybrid photovoltaic-thermal heat pump system. Int J Green Energy. 2010;7:537–51.

    Google Scholar 

  76. Ji J, Liu K, Chow T-T, Pei G, He H. Thermal analysis of PV/T evaporator of a solar assisted heat pump. Int J Energy Res. 2007;31:525–45.

    Google Scholar 

  77. Ji J, He H, Chow T, Pei G, He W, Liu K. Distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump. Int J Heat Mass Transf. 2009;52:1365–73.

    CAS  Google Scholar 

  78. Gunasekar N, Mohanraj M, Velmurugan V. Artificial neural network modeling of a photovoltaic-thermal evaporator for solar assisted heat pumps. Energy. 2015;91:908–22.

    Google Scholar 

  79. Aliuly A, Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A. Numerical modelling of photovoltaic thermal evaporator for heat pumps. Bulg Chem Commun. 2016;48:135–9.

    Google Scholar 

  80. Pei G, Ji J, Chow T-T, He H, Liu K, Yi H. Performance of the photovoltaic solar-assisted heat pump system with and without glass cover in winter: a comparative analysis. Proc Inst Mech Eng A J Power Energy. 2008;222:170–87.

    Google Scholar 

  81. Pei G, Zhang T, Fu H, Ji J, Su Y. An experimental study on a novel heat pipe-type photovoltaic/thermal system with and without a glass cover. Int J Green Energy. 2013;10(1):72–89.

    Google Scholar 

  82. Zhang X, Zhao X, Xu J, Yu X. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl Energy. 2013;102:1229–45.

    Google Scholar 

  83. Paradis P-L, Rousse DR, Lamarche L, Nesreddine H. A hybrid PV/T solar evaporator using CO2: numerical heat transfer model and simulation results. Sol Energy. 2018;170:1118–29.

    CAS  Google Scholar 

  84. Liu K, Ji J, Chow T-T, Pie G, He H, Jiang A, Yang J. Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor—a case study in Tibet. Renew Energy. 2009;34:2680–7.

    CAS  Google Scholar 

  85. Ji J, He H, Pei G, He H, Liu K. Distributed dynamic modelling with experimental validation on a photovoltaic solar-assisted heat pump. Proc Inst Mech Eng A J Power Energy. 2008;222:443–54.

    Google Scholar 

  86. Ji J, Liu K, Chow T-T, Pei G, He W, He H. Performance analysis of a photovoltaic heat pump. Appl Energy. 2008;85:680–93.

    CAS  Google Scholar 

  87. Ji J, Pei G, Chow T-T, Liu K, He H, Lu J, Han C. Experimental study of photovoltaic solar assisted heat pump system. Sol Energy. 2008;82:43–52.

    Google Scholar 

  88. Pei G, Ji J, Liu K, He H, Jiang A. Numerical study of PV/T-SAHP system. J Zhejiang Univ Sci. 2008;9:970–80.

    Google Scholar 

  89. Ammar AA, Sopian K, Alghoul MA, Elhub B, Elbreki AM. Performance study of photovoltaic/thermal solar assisted heat pump system. J Therm Anal Calorim. 2019;136:79–87.

    CAS  Google Scholar 

  90. Mastrullo R, Renno C. A thermo economic model of a photovoltaic heat pump. Appl Therm Eng. 2010;30:1959–66.

    CAS  Google Scholar 

  91. Lu S, Zhang J, Liang R, Zhou C. Refrigeration characteristics of a hybrid heat dissipation photovoltaic thermal heat pump under various ambient conditions on summer night. Renew Energy. 2020;146:2524–34.

    Google Scholar 

  92. Cai J, Ji J, Wang Y, Zhou F, Yu B. A novel PV/T-air dual source heat pump water heater system: dynamic simulation and performance characterization. Energy Convers Manag. 2017;148:635–45.

    Google Scholar 

  93. Vaishak S, Bhale PV. Effect of dust deposition on performance characteristics of a refrigerant based photovoltaic/thermal system. Sustain Energy Technol Assess. 2019;36:100548.

    Google Scholar 

  94. Shafieian A, Khiadani M, Nosrati A. Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: a review. Energy Convers Manag. 2019;183:307–31.

    Google Scholar 

  95. Fu HD, Pei G, Ji J, Long H, Zhang T, Chow TT. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system. Appl Therm Eng. 2012;40:343–50.

    CAS  Google Scholar 

  96. Fu H, Zhang T. Performance analysis of an integrated solar assisted heat pump system with heat pipe PV/T collectors operating under different weather conditions. Energy Procedia. 2017;105:1143–8.

    Google Scholar 

  97. Zhang X, Zhao X, Shen J, Hu X, Liu X, Xu J. Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Sol Energy. 2013;97:551–68.

    CAS  Google Scholar 

  98. Zhang X, Zhao X, Shen J, Xu J, Yu X. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system. Appl Energy. 2014;114:335–52.

    Google Scholar 

  99. Zhang X, Shen J, Xu P, Zhao X, Xu Y. Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions. Appl Energy. 2014;135:20–34.

    Google Scholar 

  100. Zhang S, Guan X, Guo Z. Design and economic analysis of photovoltaic-double resource heat pump. Energy Procedia. 2012;16:977–82.

    Google Scholar 

  101. Chen H, Zhang L, Jie P, Xiong Y, Xu P, Zhai H. Performance study of heat-pipe solar photovoltaic/thermal heat pump system. Appl Energy. 2017;190:960–80.

    Google Scholar 

  102. Li H, Sun Y. Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system. Energy Build. 2018;158:861–72.

    Google Scholar 

  103. Li H, Sun Y. Performance optimization and benefit analyses of a photovoltaic loop heat pipe/solar assisted heat pump water heating system. Renew Energy. 2019;134:1240–7.

    Google Scholar 

  104. Xu G, Zhang X, Deng S. Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system. Appl Therm Eng. 2011;31:3689–95.

    CAS  Google Scholar 

  105. Zhou J, Zhao X, Ma X, Qiu Z, Ji J, Du Z, Yu M. Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules. Appl Energy. 2016;178:484–95.

    Google Scholar 

  106. Zhou J, Ma X, Zha X, Yuan Y, Yu M, Li J. Numerical simulation and experimental validation of a micro-channel PV-T modules based direct expansion solar heat pump system. Renew Energy. 2020;145:1992–2004.

    Google Scholar 

  107. Zhou C, Liang R, Zhang J, Riaz A. Experimental study on the cogeneration performance of roll-bond-PVT heat pump system with single stage compression during summer. Appl Therm Eng. 2019;149:249–61.

    Google Scholar 

  108. Mohanraj M, Gunasekar N, Velmurugan V. Comparison of energy performance of heat pumps using photovoltaic-thermal evaporator with circular and triangular tube configurations. Build Simul. 2016;9:27–41.

    Google Scholar 

  109. Chen H, Riffat SB, Fu Y. Experimental study on a hybrid photovoltaic/heat pump system. Appl Therm Eng. 2011;31:4132–8.

    Google Scholar 

  110. Pranesh V, Velraj R, Christopher S, Kumaresan V. A 50 year review of basic and applied research in compound parabolic concentrating solar thermal collector for domestic and industrial applications. Sol Energy. 2019;187:293–340.

    Google Scholar 

  111. Xu G, Deng S, Zhang X, Yang L, Zhang Y. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator. Sol Energy. 2009;83:1967–76.

    CAS  Google Scholar 

  112. Lu S, Liang R, Zhang J, Zhou C. Performance improvement of solar photovoltaic/thermal heat pump system in winter by employing vapor injection cycle. Appl Therm Eng. 2019;155:135–46.

    Google Scholar 

  113. Liang R, Zhou C, Zhang J, Chen J, Riaz A. Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: an experimental investigation. Renew Energy. 2020;146:2450–61.

    Google Scholar 

  114. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air conditioning and heat pump systems—a review. Renew Sustain Energy Rev. 2012;16:1340–58.

    Google Scholar 

  115. Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for thermal analysis of heat exchanger—a review. Int J Therm Sci. 2015;90:150–72.

    Google Scholar 

  116. Sichilalu SM, Xia X. Optimal energy control of grid tied PV-diesel-battery hybrid system powering heat pump water heater. Sol Energy. 2015;115:243–54.

    Google Scholar 

  117. Sichilalu SM, Xia X. Optimal power dispatch of a grid tied battery-photovoltaic system supplying heat pump water heaters. Energy Convers Manag. 2015;102:81–91.

    Google Scholar 

  118. Sichilalu SM, Xia X, Zhang J. Optimal scheduling strategy for a grid-connected photovoltaic system for heat pump water heaters. Energy Procedia. 2014;61:1511–4.

    Google Scholar 

  119. Sichilalu SM, Xia X. Optimal power control of grid tied PV-battery-diesel system powering heat pump water heaters. Energy Procedia. 2015;75:1514–21.

    Google Scholar 

  120. Sichilalu S, Tazvinga H, Xia X. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load. Sol Energy. 2016;135:59–69.

    CAS  Google Scholar 

  121. Sichilalu S, Tazvinga H, Xia X. Optimal control of a wind–PV-hybrid powered heat pump water heater. S Appl Energy. 2017;185:1173–84.

    Google Scholar 

  122. Li S, He H, Dong K, Sheng L. Research on real-time integrated control method of PV-SHAPWH. Sol Energy. 2019;182:213–24.

    CAS  Google Scholar 

  123. Zanettia E, Aprile M, Kum D, Scoccia R, Motta M. Energy saving potentials of a photovoltaic assisted heat pump for hybrid building heating system via optimal control. J Build Eng. 2020;27:100854.

    Google Scholar 

  124. Wanjiru EM, Sichilalu SM, Xia X. Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems. Appl Energy. 2017;201:332–42.

    Google Scholar 

  125. Putrayudha SA, Kang EC, Evgueniy E, Libing Y, Lee EJ. A study of photovoltaic/thermal (PVT)-ground source heat pump hybrid system by using fuzzy logic control. Appl Therm Eng. 2015;89:578–86.

    Google Scholar 

  126. Fischer D, Bernhardt J, Madani H, Wittwer C. Comparison of control approached for variable speed heat pumps considering time variable electricity prices and PV. Appl Energy. 2017;204:93–105.

    Google Scholar 

  127. Xia L, Ma Z, Kokogiannakis G, Wang S, Gong X. A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors. Appl Energy. 2018;228:1399–412.

    Google Scholar 

  128. Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives to halogenated refrigerants—a review. Int J Green House Gas Control. 2009;3:108–19.

    CAS  Google Scholar 

  129. Mohanraj M, Muraleedharan C, Jayaraj S. A review on recent developments in new refrigerant mixtures for vapour compression based refrigeration, air conditioning and heat pump units. Int J Energy Res. 2011;35:647–69.

    CAS  Google Scholar 

  130. Wu W, Skye HM. Progress in ground source heat pumps using natural refrigerants. Int J Refrig. 2018;92:70–85.

    CAS  Google Scholar 

  131. Kasaeian A, Hosseini SM, Sheikhpour M, Mahian O, Yan W-M, Wongwises S. Applications of eco-friendly refrigerants and nano refrigerants: a review. Renew Sustain Energy Rev. 2018;96:91–9.

    CAS  Google Scholar 

  132. Yerdesh Y, Abdulina Z, Aliuly A, Belyayev Y, Kaltayev A. Numerical simulation on solar collector and cascade heat pump combi water heating systems in Kazakhstan climates. Renew Energy. 2020;145:1222–34.

    CAS  Google Scholar 

  133. Fischer D, Lindberg KB, Madani H, Wittwer C. Impact of PV and variable prices on optimal system sizing for heat pumps and thermal storage. Energy Build. 2016;128:723–33.

    Google Scholar 

  134. Vaishak S, Bhale PV. Photovoltaic/thermal-solar assisted heat pump system: current status and future prospects. Sol Energy. 2019;189:268–84.

    Google Scholar 

  135. Pathak MJM, Pearce JM, Harrison SJ. Effects on amorphous silicon photovoltaic performance from high-temperature annealing pulses in photovoltaic thermal hybrid devices. Sol Energy Mater Sol Cells. 2012;100:199–203.

    CAS  Google Scholar 

  136. Park H, Kim D, Jung J, Pham DP, Le AHT, Cho J, Hussain SQ, Yi J. HF etched glass substrates for improved thin-film solar cells. Heliyon. 2018;4:e00835.

    PubMed  PubMed Central  Google Scholar 

  137. Hussain SQ, Mallem K, Kim YJ, Le AHT, Khokhar MQ, Kim S, Dutta S, Sanyal S, Kim Y, Park J, Lee Y, Cho YH, Cho EC, Yi J. Ambient annealing influence on surface passivation and stoichiometric analysis of molybdenum oxide layer for carrier selective contact solar cells. Mater Sci Semicond Process. 2019;91:267–74.

    CAS  Google Scholar 

  138. Hussain SQ, Mallem K, Khan MA, Khokhar MQ, Lee Y, Park Y, Lee KS, Kim Y, Cho EC, Cho YH, Yi J. Versatile hole carrier selective MoOx contact for high efficiency silicon heterojunction solar cells: a review. Trans Electr Electron Mater. 2019;20:1–6.

    Google Scholar 

  139. Rahmatmand A, Harrison SJ, Oosthuizen H. An experimental investigation of snow removal from photovoltaic solar panels by electrical heating. Sol Energy. 2018;171:811–26.

    Google Scholar 

  140. Kumar R, Rosen MA. A critical review of photovoltaic-thermal solar collectors for air heating. Appl Energy. 2011;88:3603–14.

    CAS  Google Scholar 

  141. Zondag HA. Flat-plate PV–thermal collectors and systems: a review. Renew Sustain Energy Rev. 2008;12:891–959.

    Google Scholar 

  142. Farhana K, Kadirgama K, Rahman MM, Ramasamy D, Noor MM, Najafi G, Samykano M, Mahamude ASF. Improvements in the performance of solar collectors with nano fluids—a state-of the-art review. Nano struct Nano Objects 2019;100276.

  143. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.

    CAS  Google Scholar 

  144. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study. J Mol Liq. 2017;234:324–9.

    CAS  Google Scholar 

  145. Bhalla V, Tyagi H. Parameters influencing the performance of nano particles-laden fluid-based solar thermal collectors: a review on optical properties. Renew Sustain Energy Rev. 2018;84:12–42.

    CAS  Google Scholar 

  146. Ahmed B, Hayat T, Alsaedi A, Abbasi F. Entropy generation analysis for peristaltic motion of Carreau-Yasuda nanomaterial. Phys Scr. 2019.

  147. Wang X, Xia L, Bales C, Zhang X, Copertaro B, Pan S, Wu J. A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources. Renew Energy. 2010;146:2472–87.

    Google Scholar 

  148. Bigorajski J, Chwieduk D. Analysis of a micro photovoltaic/thermal—PV/T system operation in moderate climate. Renew Energy. 2019;137:127–36.

    Google Scholar 

  149. Michael JJ, Iniyan S, Goic R. Flat plate solar photovoltaic–thermal (PV/T) systems: a reference guide. Renew Sustain Energy Rev. 2015;51:62–88.

    Google Scholar 

  150. Aste N, Pero C, Leonforte F. Water flat plate PV-thermal collectors: a review. Sol Energy. 2014;102:98–115.

    Google Scholar 

  151. Patrick D, Christophe M, Matthias R, Martin HH. Efficient single glazed flat plate photovoltaic–thermal hybrid collector for domestic hot water system. Sol Energy. 2011;85:1457–68.

    Google Scholar 

  152. Wohlgemuth JH, Cunningham DW, Nguyen AM, Miller J. Long term reliability of PV modules. IEEE Photovolt Energy Conserv. 2006;2:2050–3.

    Google Scholar 

  153. Felten B, Raasch J, Weber C. Photovoltaic and heat pumps—limitations of local pricing mechanisms. Energy Econ. 2018;71:383–402.

    Google Scholar 

  154. Aguilar F, Crespi-Liorens D, Quiles PV. Environment benefits and economic feasibility of a photovoltaic assisted heat pump water heater. Sol Energy. 2019;193:20–30.

    Google Scholar 

  155. Mekhilef S, Saidur R, Kamalisarvestani M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew Sustain Energy Rev. 2012;16:2920–5.

    CAS  Google Scholar 

  156. Deng N, Jing X, Cai R, Gao J, Gao J, Shen C, Zhang Y, Sui H. Molecular simulation and experimental investigation for thermodynamic properties of new refrigerant NBY-1 for high temperature heat pump. Energy Convers Manag. 2019;179:339–48.

    CAS  Google Scholar 

  157. Khan MMA, Ibrahim NI, Mahbubul IM, Ali HM, Saidur R, Al-Sulaiman FA. Evaluation of solar collector designs with integrated latent heat thermal storage: a review. Sol Energy. 2018;166:344–50.

    Google Scholar 

  158. Manokar AM, Winston DP, Kabeel AE, El-agouz SA, Sathyamurthy R, Arunkumar T, Madhu B, Ahsan A. Integrated PV/T solar still—a mini review. Desalination. 2018;435:259–67.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Department of Science and Technology (Government of India), New Delhi, for providing research funding to the project titled Development, testing and standardization of heat pump water heaters using solar photovoltaic-thermal hybrid evaporators (ref. no.: DST/TMD/CERI/C47(G); dated 29/07/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, A., Mohanraj, M., Srinivas, M. et al. Thermal analysis of heat pump systems using photovoltaic-thermal collectors: a review. J Therm Anal Calorim 144, 1–39 (2021). https://doi.org/10.1007/s10973-020-09431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09431-2

Keywords

Navigation