Skip to main content
Log in

Kinetic study of oxy-combustion of plane tree (Platanus orientalis) seeds (PTS) in O2/Ar atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion reactivity of plane tree seeds biomass feedstock was studied using the thermogravimetry. The effects of atmosphere (O2/Ar) and different oxygen concentrations (O2/Ar = 20:80% and O2/Ar = 50:50%) on the combustion characteristics were investigated. When combustion atmosphere changes from O2/Ar = 50:50% to O2/Ar = 20:80% (reducing oxygen concentrations), the burnout temperature increases by 29.50 °C for tested biomass. Obtained results demonstrate the ease of ignition of investigated lignocellulosic material for O2/Ar = 50:50% ratio compared with O2/Ar = 20:80% ratio, and the actual trend is maintained under the condition when the heating rate increases. The reducing of oxygen concentration strongly influenced the amount of final residue products, particularly at higher heating rates (beyond 10 °C min−1). Kinetic analysis applied to investigated process shows strongly dependencies of both the apparent activation energy (E) and pre-exponential factor (logA) with conversion (α), especially in devolatilization and combustion of volatiles reaction stages. Large variation in E is attributed to existence of multiple parallel reactions. In order to solve this problem, the deconvolution technique that uses Fraser–Suzuki function was applied. It was shown that Fraser–Suzuki function fits successfully kinetic rate curves of entire combustion process, assuming the best selected nth-order reaction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biomass Thermal Efficiencies. 2014. http://www.nrel.gov/docs/fy00osti/26946.pdf. Accessed 16 Aug 2014.

  2. Fossil Fuel Plant Efficiencies—EIA. 2014. http://www.eia.gov/electricity/annual/html/epa_08_01.html. Accessed 16 Aug 2014.

  3. Oyedun AO, Gebreegziabher T, Hui CW. Mechanism and modelling of bamboo pyrolysis. Fuel Process Technol. 2013;106:595–604.

    CAS  Google Scholar 

  4. Coleman MD, Stanturf JA. Biomass feedstock production systems: economic and environmental benefits. Biomass Bioenerg. 2006;30:693–5.

    Google Scholar 

  5. Basu P. Biomass gasification, pyrolysis and torrefaction. Practical design and theory. 2nd ed. New York: Academic Press; 2013. ISBN: 9780123965431.

  6. Nguyen TLT, Hermansen JE. Life cycle environmental performance of miscanthus gasification versus other technologies for electricity production. Sustain Energy Technol Assess. 2015;9:81–94.

    Google Scholar 

  7. Raychaudhuri A, Ghosh SK. Biomass supply chain in Asian and European countries. Proced Environ Sci. 2016;35:914–24.

    Google Scholar 

  8. López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol. 2013;143:562–74.

    PubMed  Google Scholar 

  9. Othman M, Park Y-H, Ngo T, Kim S-S, Kim J, Lee K. Thermogravimetric characteristics and pyrolysis kinetics of Giheung Respia sewage sludge. Korean J Chem Eng. 2010;27:163–7.

    CAS  Google Scholar 

  10. Conesa JA, Domene A. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochim Acta. 2011;523:176–81.

    CAS  Google Scholar 

  11. da Silva DR, Crespi MS, Crnkovic PCGM, Ribeiro CA. Pyrolysis, combustion and oxy-combustion studies of sugarcane industry wastes and its blends. J Therm Anal Calorim. 2015;121:309–18.

    Google Scholar 

  12. Contreras ML, García-Frutos FJ, Bahillo A. Study of the thermal behaviour of coal/biomass blends during oxy-fuel combustion by thermogravimetric analysis. J Therm Anal Calorim. 2016;123:1643–55.

    CAS  Google Scholar 

  13. Janković B, Dodevski V, Stojmenović M, Krstić S, Popović J. Characterization analysis of raw and pyrolyzed plane tree seed (Platanus orientalis L.) samples for its application in carbon capture and storage (CCS) technology. J Therm Anal Calorim. 2018;133(1):465–80.

    Google Scholar 

  14. Bridgwater AV. Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J. 2003;91(2–3):87–102.

    CAS  Google Scholar 

  15. Dhole AE, Yarasu RB, Lata DB, Baraskar SS. Mathematical modeling for the performance and emission parameters of dual fuel diesel engine using hydrogen as secondary fuel. Int J Hydrog Energy. 2014;39:12991–3001.

    CAS  Google Scholar 

  16. Niu S, Chen M, Li Y, Xue F. Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel. 2016;178:129–38.

    CAS  Google Scholar 

  17. Zhao Z, Liu P, Wang S, Ma S, Cao J. Combustion characteristics and kinetics of five tropic oilgal strains using thermogravimetric analysis. J Therm Anal Calorim. 2018;131:1919–31.

    CAS  Google Scholar 

  18. Cong K, Zhang Y, Gan Y, Li Q. Experimental study of the ignition temperatures of low-rank coals using TGA under oxygen-deficient conditions. J Therm Anal Calorim. 2018;133:1597–607.

    CAS  Google Scholar 

  19. López R, Fernández C, Gómez X, Martínez O, Sánchez ME. Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion. J Therm Anal Calorim. 2013;114:295–305.

    Google Scholar 

  20. Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D. Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Exp Therm Fluid Sci. 2013;47:232–40.

    CAS  Google Scholar 

  21. Liu H, Gong S, Jia C, Wang Q. TG-FTIR analysis of co-combustion characteristics of oil shale semi-coke and corn straw. J Therm Anal Calorim. 2017;127:2531–44.

    CAS  Google Scholar 

  22. Wang C, Zhang X, Liu Y, Che D. Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Appl Energy. 2012;97:264–73.

    CAS  Google Scholar 

  23. Zheng G, Kozinski J. Thermal events occurring during the combustion of biomass residue. Fuel. 2000;79:181–92.

    CAS  Google Scholar 

  24. Wang Y, Hu J, Ran J, Zhang L, Pu G, Tang Q. Experimental study on combustion and kinetic characteristics of mixed industrial sludge. Proc CSEE. 2007;27:44–50.

    Google Scholar 

  25. Zhang Y, Guo Y, Cheng F, Yan K, Cao Y. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim Acta. 2015;614:137–48.

    CAS  Google Scholar 

  26. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1963;6:183–95.

    Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  28. Akahira T, Sunose T. Joint convention of four electrical institutes. Paper No. 246 (1969), Research report, Chiba Institute of Technology. Trans Sci Technol. 1971;16:22–31.

    Google Scholar 

  29. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  30. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bureau Stand. 1966;70A:487–523.

    Google Scholar 

  31. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. In: Third international conference on applied energy, Perugia, Italy; 2001. p. 1687–98.

  32. Bernard S, Fiaty K, Cornu D, Miele P, Laurent P. Kinetic modeling of the polymer-derived ceramics route: investigation of the thermal decomposition kinetics of poly[B-(methylamino)borazine] precursors into boron nitride. J Phys Chem B. 2006;110:9048–60.

    CAS  PubMed  Google Scholar 

  33. Soraru GD, Pederiva L, Latournerie J, Rishi R. Pyrolysis kinetics for the conversion of a polymer into an amorphous silicon oxycarbide ceramic. J Am Ceram Soc. 2002;85:2181–7.

    CAS  Google Scholar 

  34. Koga N, Yamane Y. Effect of mechanical grinding on the reaction pathway and kinetics of the thermal decomposition of hydromagnesite. J Therm Anal Calorim. 2008;93:963–71.

    CAS  Google Scholar 

  35. Alvarez VA, Vazquez A. Thermal degradation of cellulose derivatives/starch blends and sisal short fiber biocomposites. Polym Degrad Stab. 2004;84:13–21.

    CAS  Google Scholar 

  36. Yang XY, Jiang ZP. Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge. Bioresour Technol. 2009;100:3663–8.

    CAS  PubMed  Google Scholar 

  37. Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curves. J Therm Anal Calorim. 2007;87:223–7.

    CAS  Google Scholar 

  38. Cai J, Liu R. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J Phys Chem B. 2007;111:10681–6.

    CAS  PubMed  Google Scholar 

  39. Hu M, Chen Z, Wang S, Guo D, Ma C, Zhou Y, Chen J, Laghari M, Fazal S, Xiao B, Zhang B, Ma S. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Conv Manag. 2016;118:1–11.

    CAS  Google Scholar 

  40. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    PubMed  Google Scholar 

  41. Kullyakool S, Siriwong K, Noisong P, Danvirutai C. Kinetic triplet evaluation of a complicated dehydration of Co3(PO4)2 8H2O using the deconvolution and the simplified master plots combined with nonlinear regression. J Therm Anal Calorim. 2017;127:1963–74.

    CAS  Google Scholar 

  42. Cheng Z, Wu W, Ji P, Zhou X, Liu R, Cai J. Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J Therm Anal Calorim. 2015;119:1429–38.

    CAS  Google Scholar 

  43. Taghizadeh MT, Yeganeh N, Rezaei M. Kinetic analysis of the complex process of poly(vinyl alcohol) pyrolysis using a new coupled deconvolution method. J Therm Anal Calorim. 2014;118:1733–46.

    CAS  Google Scholar 

  44. Nakano M, Wada T, Koga N. Exothermic behavior of thermal decomposition of sodium percarbonate: kinetic deconvolution of successive endothermic and exothermic processes. J Phys Chem A. 2015;119:9761–9.

    CAS  PubMed  Google Scholar 

  45. Kitabayashi S, Koga N. Thermal decomposition of Tin(II) oxyhydroxide and subsequent oxidation in air: kinetic deconvolution of overlapping heterogeneous processes. J Phys Chem C. 2015;119:16188–99.

    CAS  Google Scholar 

  46. Wu Z. Fundamentals of pulverised coal combustion. IEA Clean Coal Centre Reports; 2005.

  47. Yan J. Handbook of clean energy systems, 6 volume set, vol. set. New York: Wiley; 2015.

    Google Scholar 

  48. Toporov D. Combustion of pulverised coal in a mixture of oxygen and recycled flue gas. Amsterdam: Elsevier; 2014.

    Google Scholar 

  49. Glassman I, Yetter RA, Glumac NG. Combustion. 5th ed. New York: Academic Press; 2014.

    Google Scholar 

  50. Liang F, Zhang T, Xiang H, Yang X, Hu W, Mi B, Liu Z. Pyrolysis characteristics of cellulose derived from moso bamboo and poplar. J Therm Anal Calorim. 2018;132:1359–65.

    CAS  Google Scholar 

  51. Reh U, Kraepelin G, Lamprecht I. Use of differential scanning calorimetry for structural analysis of fungally degraded wood. Appl Environ Microbiol. 1986;52:1101–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kai X, Yang Y, Huang Y, Sun YHEY, Li R. The effect of biomass components on the co-combustion characteristics of biomass with coal. In: Tan Y, editors. Digital manufacturing and automation. Switzerland: Trans Tech Publications Ltd.; 2011. pp. 1274–78.

    Google Scholar 

  53. Magdziarz A, Wilk M. Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Conv Manag. 2013;75:425–30.

    CAS  Google Scholar 

  54. Wang X, Hu Z, Deng S, Wang Y, Tan H. Kinetics investigation on the combustion of biochar in O2/CO2 atmosphere. Environ Prog Sustain Energy. 2015;34(3):923–32.

    CAS  Google Scholar 

  55. Butterman HC, Castaldi MJ. Influence of CO2 injection on biomass gasification. Ind Eng Chem Res. 2007;46:8875–86.

    CAS  Google Scholar 

  56. Barrio M, Gobel B, Risnes H, Henriksen U, Hustad JE, Sorensen LH. Steam gasification of wood char and the effect of hydrogen inhibition on the chemical kinetics. In: Bridgwater AV, editor. Progress in thermochemical biomass conversion. Oxford: Blackwell; 2001. p. 32–46.

    Google Scholar 

  57. Maschio G, Lucchesi A, Koufopanos C. Study of kinetic and transfer phenomena in the pyrolysis of biomass particles. In: Bridgwater AV editor. Advances in thermochemical biomass conversion. 1st ed. Dordrecht: Springer; 1993. pp. 746–60. ISBN 978-94-010-4582-7.

  58. Basu P. Biomass gasification and pyrolysis. Practical design and theory. Elsevier, Oxford; 2010. pp. 117–67. ISBN 978-0-12-374988-8.

  59. Cai J, Liu R. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels. 2007;21:3695–7.

    CAS  Google Scholar 

  60. Niessen IR. Combustion and incineration processes—application in environmental engineering. 2nd ed. New York: Marcel Dekker; 1995.

    Google Scholar 

  61. Nimmo W, Daood SS, Gibbs B. The effect of O2 enrichment on NOx formation in biomass co-fired pulverised coal combustion. Fuel. 2010;89:2945–52.

    CAS  Google Scholar 

  62. Smart JP, Riley GS. Use of oxygen enriched air combustion to enhance combined effectiveness of oxyfuel combustion and post-combustion flue gas cleanup. Part 1 Combustion. J Energy Inst. 2012;85:123–30.

    CAS  Google Scholar 

  63. Liang AY, Hui SN, Xu TM. TG–DTG analysis and combustion kinetics characteristic study on several kinds of biomass. Renew Energy Res (China). 2008;26:56–61.

    CAS  Google Scholar 

  64. Peng H, Wang N, Hu Z, Yu Z, Liu Y, Zhang J, Ruan RR. Physicochemical characterization of hemicelluloses from bamboo (Phyllostachys pubescens Mazel) stem. Ind Crop Prod. 2012;37:41–50.

    CAS  Google Scholar 

  65. Negahdar L, Delidovich I, Palkovits R. Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: insights into the kinetics and reaction mechanism. Appl Catal B Environ. 2016;184:285–98.

    CAS  Google Scholar 

  66. Cuoci A, Faravelli T, Frassoldati A, Granata S, Migliavacca G, Ranzi E, Sommariva S. A general mathematical model of biomass devolatilization. Note 1. Lumped kinetic models of cellulose, hemicellulose and lignin. In: 30th Meeting of the Italian Section of the Combustion; 2007. pp. 1–6. ISBN: 9788888104072.

  67. Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energ Combust Sci. 2016;53:41–79.

    Google Scholar 

  68. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenerg. 2010;34:290–301.

    CAS  Google Scholar 

  69. Calvo LF, Otero M, Jenkins BM, Moran A, Garcia AI. Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process Technol. 2004;85:279–91.

    CAS  Google Scholar 

  70. Momoh M, Eboatu AN, Kolawole EG, Horrocks AR. Thermogravimetric studies of the pyrolytic behaviour in air of selected tropical timbers. Fire Mater. 1996;20:173–81.

    CAS  Google Scholar 

  71. Aho M, Houtari J. The effects of atmosphere on pyrolysis of solid fuels produced in finland. In: Overend RP, Milne TA, Mudge LK, editors. Fundamentals of thermochemical biomass conversion. Amsterdam: Elsevier; 1985. p. 429–35.

    Google Scholar 

  72. Magnaterra M, Fusco JR, Ochoa J, Cuckierman R. Kinetic study of the reaction of different hardwood sawdust chars with oxygen, chemical and structural characterization of the samples. In: Bridgwater AV, editor. Advances in thermochemical biomass conversion. Blackie A.& P.; 1994. pp 116–30.

  73. Janse AMC, de Jonge HG, Prins W, van Swaaij WPM. The combustion kinetics of char obtained by flash pyrolysis of pine wood. Ind Eng Chem Res. 1998;37:3909–18.

    CAS  Google Scholar 

  74. Di Blasi C, Buonanno F, Branca C. Reactivities of some biomass chars in air. Carbon. 1999;37:1227–38.

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge financial support of Ministry of Education, Science and Technological Development of the Republic of Serbia under the Projects 172015, III42010 and III45005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Janković.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janković, B., Manić, N., Dodevski, V. et al. Kinetic study of oxy-combustion of plane tree (Platanus orientalis) seeds (PTS) in O2/Ar atmosphere. J Therm Anal Calorim 142, 953–976 (2020). https://doi.org/10.1007/s10973-019-09154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09154-z

Keywords

Navigation