Skip to main content
Log in

Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Creating greater thermal efficiency is desirable yet challenging in many industrial applications. Employing nanofluids for increasing the thermal behavior of the working fluid and consequently the overall heat transfer rate is an interesting solution that has widely been studied in the literature. This study, however, proposes the use of a special geometry of disturber (i.e., a helical-twisting shape) for a circular duct with nanofluid (water–CuO) as the heat transfer medium and a forced convective flow for this objective. To assess the effect of this instrument, FVM is employed to simulate the hydrothermal performance of the flow through the duct and the disturber. The main parameters of the study include the effects of the width of the disturber blade and inlet velocity on Darcy factor and the heat transfer coefficient. The homogenous model was used for the properties of nanomaterial. The results of the simulations show that better turbulence, i.e., a greater performance, is observed as the width of the flow disturber blade increases and the Reynolds number picks up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  2. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.

    Article  CAS  Google Scholar 

  3. Lu G, Zhou G. Numerical simulation on performances of plane and curved winglet – Pair vortex generators in a rectangular channel and field synergy analysis. Int J Therm Sci. 2016;109:323–33.

    Article  Google Scholar 

  4. Shah Z, Gul T, Islam S, Khan MA, Bonyah E, Hussain F, Mukhtar S, Ullah M. Three dimensional third grade nanofluid flow in a rotating system between parallel plates with Brownian motion and thermophoresis effects. Results Phys. 2018;10:36–45.

    Article  CAS  Google Scholar 

  5. Usman M, Soomro FA, Haq RU, Wang W, Defterli O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. Int J Heat Mass Transf. 2018;122:1255–63. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.045.

    Article  CAS  Google Scholar 

  6. Gibanov NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Mixed convection with entropy generation of nanofluid in a lid-driven cavity under the effects of a heat-conducting solid wall and vertical temperature gradient. Eur J Mech B/Fluids. 2018;70:148–59. https://doi.org/10.1016/j.euromechflu.2018.03.002.

    Article  Google Scholar 

  7. Selimefendigil F, Öztop HF. Magnetic field effects on the forced convection of CuO–water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int J Mech Sci. 2018;146–147:9–24. https://doi.org/10.1016/j.ijmecsci.2018.07.011.

    Article  Google Scholar 

  8. Khan M, Irfan M, Ahmad L, Khan WA. Simultaneous investigation of MHD and convective phenomena on time-dependent flow of Carreau nanofluid with variable properties: dual solutions. Phys Lett A. 2018;382:2334–42. https://doi.org/10.1016/j.physleta.2018.05.033.

    Article  CAS  Google Scholar 

  9. Kefayati GHR, Sidik NAC. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 2017;305:679–703. https://doi.org/10.1016/j.powtec.2016.10.077.

    Article  CAS  Google Scholar 

  10. Haq RU, Nadeem S, Khan ZH, Noor NFM. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B Condens Matter. 2015;457:40–7. https://doi.org/10.1016/j.physb.2014.09.031.

    Article  CAS  Google Scholar 

  11. Selimefendigil F, Öztop HF. Conjugate mixed convection of nanofluid in a cubic enclosure separated with a conductive plate and having an inner rotating cylinder. Int J Heat Mass Transf. 2019;139:1000–17.

    Article  Google Scholar 

  12. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33. https://doi.org/10.1016/j.cma.2018.09.044.

    Article  Google Scholar 

  13. Sheremet MA, Pop I, Mahian O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.070.

    Article  CAS  Google Scholar 

  14. Mahian I, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreueri C, Marshall JS, Siavash M, Taylor RA, Niazmand N, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  15. Khan MS, Abid M, Ali HM, Amber KP, Javed S. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl Therm Eng. 2019;148:295–306.

    Article  CAS  Google Scholar 

  16. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl. Sci. 2018;8(4):587. https://doi.org/10.3390/app8040587.

    Article  CAS  Google Scholar 

  17. Rahimi A, Sepehr M, Lariche MJ, Kasaeipoor A, Kolsi L. Entropy generation analysis and heatline visualization of free convection in nanofluid (KKL model-based)-filled cavity including internal active fins using lattice Boltzmann method. Comput Math Appl. 2018;75:1814–30.

    Article  Google Scholar 

  18. Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  19. Mahian I, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreueri C, Marshall JS, Siavash M, Taylor RA, Niazmand N, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  20. Alam T, Kim M-H. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev. 2018;81:813–39. https://doi.org/10.1016/j.rser.2017.08.060.

    Article  CAS  Google Scholar 

  21. Naphon P, Wiriyasart S. Pulsating flow and magnetic field effects on the convective heat transfer of TiO2–water nanofluids in helically corrugated tube. Int J Heat Mass Transf. 2018;125:1054–60. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.015.

    Article  CAS  Google Scholar 

  22. Khoshvaght-Aliabadi M, Khaligh SF, Tavassoli Z. An investigation of heat transfer in heat exchange devices with spirally-coiled twisted-ducts using nanofluid. Appl Therm Eng. 2018;143:358–75. https://doi.org/10.1016/j.applthermaleng.2018.07.112.

    Article  CAS  Google Scholar 

  23. Navaei AS, Mohammed HA, Munisamy KM, Yarmand H, Gharehkhani S. Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels. Powder Technol. 2015;286:332–41. https://doi.org/10.1016/j.powtec.2015.06.009.

    Article  CAS  Google Scholar 

  24. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.022.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Jafaryar M, Li Z. Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq. 2018;263:489–500. https://doi.org/10.1016/j.molliq.2018.04.147.

    Article  CAS  Google Scholar 

  26. Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.

    Article  CAS  Google Scholar 

  27. Jajja SA, Ali W, Ali HM, Ali AM. Water cooled minichannel heat sinks for microprocessor cooling: effect of fin spacing. Appl Therm Eng. 2014;64:76–82.

    Article  CAS  Google Scholar 

  28. Sheikholeslami Mohsen, Arabkoohsar Ahmad, Khan Ilyas, Shafee Ahmad, Li Zhixiong. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    Article  CAS  Google Scholar 

  29. Jajja SA, Ali W, Ali HM. Multi walled carbon nanotube nanofluids for thermal management of high heat generating computer processors. Heat Transf Asian Res. 2014;7:653–66.

    Article  Google Scholar 

  30. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  31. Siddiqui AM, Arshad W, Ali HM, Ali M, Nasir MA. Evaluation of nanofluids performance for simulated microprocessor. Therm Sci. 2017;21(5):2227–36.

    Article  Google Scholar 

  32. Messoul A, Laribi B, Youcefi A, Kolsi L. Numerical investigation of the performance of the etoile flow conditioner under different geometric and dynamic configurations. J Eur Syst Autom. 2018;51(1–3):141. https://doi.org/10.3166/jesa.51.141-152.

    Article  Google Scholar 

  33. Ali HM, Arshad W. Effect of channel angle of pin–fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids. Int J Heat Mass Transf. 2017;106:465–72.

    Article  CAS  Google Scholar 

  34. Rahimi A, Kasaeipoor A, Malekshah EH, Kolsi L. Natural convection analysis by entropy generation and heatline visualization using lattice Boltzmann method in nanofluid filled cavity included with internal heaters-empirical. Int J Mech Sci. 2017;133:199–216.

    Article  Google Scholar 

  35. Al-Rashed A, Aich W, Kolsi L, Mahian O, Hussein AK, Borjini MN. Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: three-dimensional modeling. Entropy. 2017;19(5):200. https://doi.org/10.3390/e19050200.

    Article  CAS  Google Scholar 

  36. Elashmawy M, Kolsi L. Turbulent forced convection heat transfer in triangular cross sectioned helically coiled tube. Int J Adv Appl Sci. 2016;3(7):18–23.

    Article  Google Scholar 

  37. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  39. Incropera FP, Bergman TL, Lavine AS, DeWitt DP. Fundamentals of heat and mass transfer; 2011. https://doi.org/10.1073/pnas.0703993104.

    Article  CAS  Google Scholar 

  40. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    Article  CAS  Google Scholar 

  41. Kim SMD, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23.

    Article  Google Scholar 

  42. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. 6th ed. Hoboken: Wiley; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arabkoohsar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Arabkoohsar, A. & Jafaryar, M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim 139, 3317–3329 (2020). https://doi.org/10.1007/s10973-019-08683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08683-x

Keywords

Navigation