Skip to main content
Log in

A comprehensive review on nanofluid operated solar flat plate collectors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The impact of population explosion and continuous upsurge on energy demand has resulted in the intimidating depletion of fossil fuel resources, increased environmental pollution, and elevated production and consumption cost. Hence, in the past two decades the demand for renewable energy has escalated. The solar energy is the most trending topic when talking about renewable energy sources, because of its ease of availability, reduced dependence on foreign fuels and negligible maintenance. This can be directly harnessed unlike other renewable energy sources. A solar flat plate collector converts the radiant solar energy from the sun into thermal energy; usually, copper or aluminium is used as heat absorbing material. However, to further enhance the performance and thermophysical properties of the heat exchanger liquids of flat plate solar collectors like radiative heat transfer and thermal conductivity, the nanofluids are used. The use of nanofluids as an innovative type of working fluids is reasonably a new development in solar flat plate collectors. They are prepared by mixing low concentration of solid particles, sized 1–100 nm with the base fluid. The objectives of this review paper is to recapitulate the investigations carried in the field of solar flat plate collectors using a range of nanofluids, the performance analysis of various flat plate collectors using numerous nanofluids and the challenges faced in developing an efficient thermal collector using nanofluids. Furthermore, the article discusses the opportunities for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Abbreviations

A c :

Collector area (m2)

ASHRAE:

American Society of Heating, Refrigerating, and Air-Conditioning Engineers

C p :

Specific heat of fluid (J kg−1 K−1)

CNT:

Carbon nanotube

CTAB:

Cetyl trimethylammonium bromide

d :

Diameter of tube (m)

DASC:

Direct absorption solar collector

EG:

Ethylene glycol

\({\dot{\text{E}}\text{x}}\) :

Exergy rate (J kg−1 s−1)

FPSC:

Flat plate solar collector

F R :

Heat removal factor

GNP:

Graphene nanoplatelet

G S :

Absorbed solar energy per m2

G T :

Incident solar radiation (W m−2)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of tube (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

MWCNT:

Multiwalled carbon nanotubes

PEG 400:

Polyethylene glycol 400

PVD:

Physical vapor deposition

Q u :

Useful energy gain

SDBS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

\(\dot{S}_{\text{gen}}\) :

Entropy generation rate (J kg−1 K−1 s−1)

SWCNT:

Single-walled carbon nanotube

T a :

Ambient temperature (K)

T i :

Inlet fluid temperature (K)

T o :

Outlet fluid temperature (K)

T s :

Light source temperature (K)

U L :

Overall heat loss

V :

Velocity of fluid flowing (L min−1)

\(\alpha\) :

Absorptance of absorber plate

\(\rho\) :

Density of fluid

\(\tau\) :

Transmittance of glass cover

\(\eta_{\text{c}}\) :

Collector efficiency

µ :

Dynamic viscosity (Pa-s)

bf:

Base fluid

nf:

Nanofluid

np:

Nanoparticles

References

  1. Kalogirou SA. Solar energy engineering: processes and systems. Cambridge: Academic Press; 2013.

    Google Scholar 

  2. Ohler A, Fetters I. The causal relationship between renewable electricity generation and GDP growth: a study of energy sources. Energy Econ. 2014;43:125–39.

    Google Scholar 

  3. Alper A, Oguz O. The role of renewable energy consumption in economic growth: evidence from asymmetric causality. Renew Sustain Energy Rev. 2016;60:953–9.

    Google Scholar 

  4. Tugcu CT, Ozturk I, Aslan A. Renewable and non-renewable energy consumption and economic growth relationship revisited: evidence from G7 countries. Energy Econ. 2012;34(6):1942–50.

    Google Scholar 

  5. Foster R, Ghassemi M, Cota A. Solar energy: renewable energy and the environment. Boca Raton: CRC Press; 2009.

    Google Scholar 

  6. Coskun C, Oktay Z, Dincer I. Thermodynamic analyses and case studies of geothermal based multi-generation systems. J Clean Prod. 2012;32:71–80.

    Google Scholar 

  7. AlZaharani AA, Dincer I, Naterer G. Performance evaluation of a geothermal based integrated system for power, hydrogen and heat generation. Int J Hydrog Energy. 2013;38(34):14505–11.

    CAS  Google Scholar 

  8. Jiaqiang E, et al. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine. Energy Convers Manag. 2016;117:410–9.

    Google Scholar 

  9. Soudagar MEM, et al. The effect of nano-additives in diesel–biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics. Energy Convers Manag. 2018;178:146–77.

    CAS  Google Scholar 

  10. Zanuttigh B, Angelelli E, Kofoed JP. Effects of mooring systems on the performance of a wave activated body energy converter. Renew Energy. 2013;57:422–31.

    Google Scholar 

  11. Verma V, Kundan L. Thermal performance evaluation of a direct absorption flat plate solar collector (DASC) using Al2O3–H2O based nanofluids. ISOR J Mech Civil Eng. 2013;6:2320–3344.

    Google Scholar 

  12. Taylor RA, et al. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett. 2011;6(1):225.

    PubMed  PubMed Central  Google Scholar 

  13. Duffie JA, Beckman WA. Solar engineering of thermal processes. New York: Wiley; 2013.

    Google Scholar 

  14. Bogaerts WF, Lampert CM. Materials for photothermal solar energy conversion. J Mater Sci. 1983;18(10):2847–75.

    CAS  Google Scholar 

  15. Hottel H, Woertz B. Performance of flat-plate solar-heat collectors. Trans Am Soc Mech Eng (United States). 1942;64:91.

    Google Scholar 

  16. Mahian O, et al. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    CAS  Google Scholar 

  17. Otanicar TP, et al. Nanofluid-based direct absorption solar collector. J Renew Sustain Energy. 2010;2(3):033102.

    Google Scholar 

  18. Khullar V, et al. Solar energy harvesting using nanofluids-based concentrating solar collector. J Nanotechnol Eng Med. 2012;3(3):031003.

    Google Scholar 

  19. Phelan P, et al. Trends and opportunities in direct–absorption solar thermal collectors. J Therm Sci Eng Appl. 2013;5(2):021003.

    Google Scholar 

  20. Sani E, et al. Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt Express. 2010;18(5):5179–87.

    CAS  PubMed  Google Scholar 

  21. Minardi JE, Chuang HN. Performance of a “black” liquid flat-plate solar collector. Sol Energy. 1975;17(3):179–83.

    Google Scholar 

  22. Efficiency, G.G.E. 2013; Available from: http://www.green-group.rs/index.php?r=1780.

  23. Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2007;11(5):797–817.

    CAS  Google Scholar 

  24. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1–3):334–44.

    CAS  Google Scholar 

  25. Gupta M, et al. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70.

    CAS  Google Scholar 

  26. Maiga SEB, et al. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.

    CAS  Google Scholar 

  27. Ahuja AS. Augmentation of heat transport in laminar flow of polystyrene suspensions. II. Analysis of the data. J Appl Phys. 1975;46(8):3417–25.

    CAS  Google Scholar 

  28. Sohn CW, Chen M. Microconvective thermal conductivity in disperse two-phase mixtures as observed in a low velocity Couette flow experiment. J Heat Transf. 1981;103(1):47–51.

    Google Scholar 

  29. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Chicago: Argonne National Lab.; 1995.

    Google Scholar 

  30. Hwang Y, et al. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2008;186(2):145–53.

    CAS  Google Scholar 

  31. Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1.

    Google Scholar 

  32. Sadri R, et al. A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. J Colloid Interface Sci. 2017;504:115–23.

    CAS  PubMed  Google Scholar 

  33. Xiaowu W, Ben H. Exergy analysis of domestic-scale solar water heaters. Renew Sustain Energy Rev. 2005;9(6):638–45.

    Google Scholar 

  34. Ho C, Chen T. The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle. Renew Energy. 2006;31(7):953–70.

    CAS  Google Scholar 

  35. Ibrahim O, et al. Improved model for calculating instantaneous efficiency of flat-plate solar thermal collector. J Heat Transf. 2018;140(6):062801.

    Google Scholar 

  36. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018;791:1–59.

    Google Scholar 

  37. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018;790:1–48.

    Google Scholar 

  38. Eastman JA, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    CAS  Google Scholar 

  39. Rashidi S, et al. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    CAS  Google Scholar 

  40. Hong T-K, Yang H-S, Choi C. Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys. 2005;97(6):064311.

    Google Scholar 

  41. Li Y, et al. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101.

    CAS  Google Scholar 

  42. Colangelo G, et al. A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl Energy. 2013;111:80–93.

    CAS  Google Scholar 

  43. Pantzali M, Mouza A, Paras S. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Eng Sci. 2009;64(14):3290–300.

    CAS  Google Scholar 

  44. Saidur R, Leong K, Mohammad H. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    CAS  Google Scholar 

  45. Behi M, Mirmohammadi SA. Investigation on thermal conductivity, viscosity and stability of nanofluids. Stockholm: Royal Institute of Technology (KTH), School of Industrial Engineering and Management; 2012.

    Google Scholar 

  46. Hordy N, et al. High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy. 2014;105:82–90.

    CAS  Google Scholar 

  47. Mahian O, et al. Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids: effects of nanoparticle size and pH. J Heat Transf. 2015;137(6):061011.

    Google Scholar 

  48. Sadri R, et al. Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer. Energy Convers Manag. 2017;150:26–36.

    CAS  Google Scholar 

  49. Li J, Li Z, Wang B. Experimental viscosity measurements for copper oxide nanoparticle suspensions. Tsinghua Sci Technol. 2002;7(2):198–201.

    CAS  Google Scholar 

  50. Hosseini M, et al. Numerical study of turbulent heat transfer of nanofluids containing eco-friendly treated carbon nanotubes through a concentric annular heat exchanger. Int J Heat Mass Transf. 2018;127:403–12.

    CAS  Google Scholar 

  51. Razi P, Akhavan-Behabadi M, Saeedinia M. Pressure drop and thermal characteristics of CuO-base oil nanofluid laminar flow in flattened tubes under constant heat flux. Int Commun Heat Mass Transf. 2011;38(7):964–71.

    CAS  Google Scholar 

  52. Duffie JA, Beckman W. Solar thermal engineering processes. New York: Wiley; 1980.

    Google Scholar 

  53. Standard AJASoH. Methods of testing to determine the thermal performance of solar collectors. 1977. p. 93–77.

  54. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    CAS  Google Scholar 

  55. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–70.

    CAS  Google Scholar 

  56. Zhang X, et al. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Thermal Fluid Sci. 2007;31(6):593–9.

    CAS  Google Scholar 

  57. Nieto de Castro C, et al. Standard reference data for the thermal conductivity of liquids. J Phys Chem Ref Data. 1986;15(3):1073–86.

    CAS  Google Scholar 

  58. Corcione MJEC. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    CAS  Google Scholar 

  59. Esfe MH, et al. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Google Scholar 

  60. Javadi F, Saidur R, Kamalisarvestani M. Investigating performance improvement of solar collectors by using nanofluids. Renew Sustain Energy Rev. 2013;28:232–45.

    CAS  Google Scholar 

  61. Yousefi T, et al. An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Thermal Fluid Sci. 2012;39:207–12.

    CAS  Google Scholar 

  62. Chaji H, et al. Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Mod Appl Sci. 2013;7(10):60.

    Google Scholar 

  63. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    CAS  Google Scholar 

  64. Said Z, et al. Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod. 2015;92:343–53.

    CAS  Google Scholar 

  65. Sharafeldin MA, Gróf G, Mahian O. Experimental study on the performance of a flat-plate collector using WO3/water nanofluids. Energy. 2017;141:2436–44.

    CAS  Google Scholar 

  66. Yousefi T, et al. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39(1):293–8.

    CAS  Google Scholar 

  67. Yousefi T, et al. An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy. 2012;86(2):771–9.

    CAS  Google Scholar 

  68. Zamzamian A, et al. An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2014;71:658–64.

    CAS  Google Scholar 

  69. Moghadam AJ, et al. Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Therm Fluid Sci. 2014;58:9–14.

    CAS  Google Scholar 

  70. He Q, Zeng S, Wang S. Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids. Appl Therm Eng. 2015;88:165–71.

    CAS  Google Scholar 

  71. Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manag. 2015;95:160–9.

    CAS  Google Scholar 

  72. Meibodi SS, et al. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int Commun Heat Mass Transf. 2015;65:71–5.

    Google Scholar 

  73. Shojaeizadeh E, Veysi F, Kamandi A. Exergy efficiency investigation and optimization of an Al2O3–water nanofluid based flat-plate solar collector. Energy Build. 2015;101:12–23.

    Google Scholar 

  74. Vakili M, et al. Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Sol Energy. 2016;131:119–30.

    CAS  Google Scholar 

  75. Ahmadi A, Ganji DD, Jafarkazemi F. Analysis of utilizing graphene nanoplatelets to enhance thermal performance of flat plate solar collectors. Energy Convers Manag. 2016;126:1–11.

    CAS  Google Scholar 

  76. Noghrehabadi A, Hajidavaloo E, Moravej M. Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid. Case Stud Therm Eng. 2016;8:378–86.

    Google Scholar 

  77. Verma SK, Tiwari AK, Chauhan DS. Performance augmentation in flat plate solar collector using MgO/water nanofluid. Energy Convers Manag. 2016;124:607–17.

    CAS  Google Scholar 

  78. Vincely DA, Natarajan E. Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation. Energy Convers Manag. 2016;117:1–11.

    Google Scholar 

  79. Kim H, Kim J, Cho H. Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid. Energy. 2017;118:1304–12.

    CAS  Google Scholar 

  80. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.

    CAS  Google Scholar 

  81. Jouybari HJ, et al. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy. 2017;114:1407–18.

    CAS  Google Scholar 

  82. Kang W, Shin Y, Cho H. Economic analysis of flat-plate and U-tube solar collectors using an Al2O3 nanofluid. Energies. 2017;10(11):1911.

    Google Scholar 

  83. Stalin PMJ, et al. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2019;135(1):29–44.

    Google Scholar 

  84. Sundar LS, et al. Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renew Energy. 2018;119:820–33.

    CAS  Google Scholar 

  85. Sharafeldin M, Gróf G. Experimental investigation of flat plate solar collector using CeO2–water nanofluid. Energy Convers Manag. 2018;155:32–41.

    CAS  Google Scholar 

  86. Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew Energy. 2018;118:122–30.

    CAS  Google Scholar 

  87. Mirzaei M, Hosseini SMS, Kashkooli AMM. Assessment of Al2O3 nanoparticles for the optimal operation of the flat plate solar collector. Appl Therm Eng. 2018;134:68–77.

    CAS  Google Scholar 

  88. Akram N, et al. An experimental investigation on the performance of a flat-plate solar collector using eco-friendly treated graphene nanoplatelets–water nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08153-4.

    Article  Google Scholar 

  89. Alim M, et al. Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy Build. 2013;66:289–96.

    Google Scholar 

  90. Faizal M, Saidur R, Mekhilef S. Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid. In: IOP Conference Series: Earth and Environmental Science, vol. 16, no. 1. IOP Publishing; 2013. p. 012004.

  91. Faizal M, et al. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manag. 2013;76:162–8.

    CAS  Google Scholar 

  92. Said Z, et al. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Energy Build. 2014;78:1–9.

    Google Scholar 

  93. Mahian O, et al. Performance analysis of a minichannel-based solar collector using different nanofluids. Energy Convers Manag. 2014;88:129–38.

    CAS  Google Scholar 

  94. Shojaeizadeh E, Veysi F. Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector. Appl Therm Eng. 2016;98:1116–29.

    CAS  Google Scholar 

  95. Said Z, et al. Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. J Clean Prod. 2016;112:3915–26.

    CAS  Google Scholar 

  96. Said Z, Saidur R, Rahim N. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J Clean Prod. 2016;133:518–30.

    CAS  Google Scholar 

  97. Hajabdollahi F, Premnath K. Numerical study of the effect of nanoparticles on thermoeconomic improvement of a solar flat plate collector. Appl Therm Eng. 2017;127:390–401.

    CAS  Google Scholar 

  98. Moghadam MC, Edalatpour M, Solano JP. Numerical study on conjugated laminar mixed convection of alumina/water nanofluid flow, heat transfer, and entropy generation within a tube-on-sheet flat plate solar collector. J Sol Energy Eng. 2017;139(4):041011.

    Google Scholar 

  99. Hawwash A, et al. Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Appl Therm Eng. 2018;130:363–74.

    CAS  Google Scholar 

  100. Natarajan E, Sathish R. Role of nanofluids in solar water heater. Int J Adv Manuf Technol. 2009; 1–5.

  101. Polvongsri S, Kiatsiriroat T. Enhancement of flat-plate solar collector thermal performance with silver nano-fluid. In: Second TSME international conference on mechanical engineering, Krabi, Thailand; 2011.

  102. Vijayakumaar S, Shankar RL, Babu K. Effect of CNT–H2O nanofluid on the performance of solar flat plate collector-an experimental investigation. In: International conference on advanced nanomaterials and emerging engineering technologies (ICANMEET). IEEE; 2013.

  103. Jamal-Abad MT, et al. Experimental study of the performance of a flat-plate collector using Cu–water nanofluid. J Thermophys Heat Transf. 2013;27(4):756–60.

    CAS  Google Scholar 

  104. Said Z, et al. Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transf. 2013;48:99–107.

    CAS  Google Scholar 

  105. Said Z, et al. Thermophysical properties of single wall carbon nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol Energy. 2015;115:757–69.

    CAS  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank Higher Education Commission of Pakistan (HEC) for funding his Ph.D. study through a scholarship. The authors gratefully acknowledge UMRG grant RP045C-17AET, UM Research University Grant GPF050A-2018 and University of Malaya, Malaysia, for the support to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naveed Akram, Rad Sadri or Mohd Nashrul Mohd Zubir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, N., Sadri, R., Kazi, S.N. et al. A comprehensive review on nanofluid operated solar flat plate collectors. J Therm Anal Calorim 139, 1309–1343 (2020). https://doi.org/10.1007/s10973-019-08514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08514-z

Keywords

Navigation