Skip to main content
Log in

Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the effects of pure water, SiO2/water nanofluid, and a phase-change material (PCM) as coolants on the performance of a photovoltaic thermal (PVT) system are numerically investigated. The simulations are performed on two modules of PVT with PCM (PVT/PCM module) and without (PVT module). Parameters including PV surface temperature, thermal, and electrical efficiencies of the systems are studied and compared with each other. Moreover, the results of nanofluid as a working fluid is compared with those obtained using pure water. The results show that in the water-based PVT/PCM, the average PV cell temperature is decreased by 16 °C compared to that of the PVT system. This results in an increase of 8% in the electrical efficiency and 25% in the thermal efficiency. In addition, using nanofluid (SiO2 with 1 and 3 mass% mass fraction) as a coolant in the PVT/PCM system increases the thermal efficiency by 3.51% and 10.40%, for 1 and 3 mass%, respectively, compared to that of the PVT/PCM with pure water as a coolant. This study shows that increasing the melting temperature of the phase-change material leads to an increase in the thermal efficiency of the PVT/PCM system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Area (m2)

\(C_{\text{P}}\) :

Specific heat capacity (J kg−1 K−1)

C :

Mushy zone constant (kg m−3 s−1)

\(d\) :

Diameter (m)

\(\dot{E}\) :

Power (W)

\(\dot{G}\) :

Solar irradiation rate (W m−2)

h :

Specific enthalpy (J kg−1)

\(I\) :

Electrical current (A)

\(k\) :

Thermal conductivity (W m−1 K−1)

L :

Latent heat (J kg−1)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(P\) :

Pressure (Pa)

\(V\) :

Velocity (m s−1)

\(T\) :

Temperature (K)

α :

Absorptivity

\(\beta\) :

Liquid fraction

\(\varepsilon\) :

Numerical value

\(\eta\) :

Energy efficiency (%)

\(\kappa_{\text{B}}\) :

Boltzmann constant

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\phi\) :

Nanoparticles volume fraction

ρ :

Density (kg m−3)

τ :

Transmissivity

bf:

Base fluid

c:

Collector

el:

Electrical

in:

Inlet

le:

Latent enthalpy

n:

Nanoparticle

nf:

Nanofluid

out:

Outlet

ov:

Overall

ref:

Reference value

th:

Thermal

References

  1. Rashidi S, Hossein Kashefi M, Hormozi F. Potential applications of inserts in solar thermal energy systems—a review to identify the gaps and frontier challenges. Sol Energy. 2018;171:929–52. https://doi.org/10.1016/j.solener.2018.07.017.

    Article  Google Scholar 

  2. Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K, Ibrahim A, Mat S, et al. Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant. Energy. 2018;151:33–44. https://doi.org/10.1016/j.energy.2018.03.040.

    Article  CAS  Google Scholar 

  3. Vittorini D, Castellucci N, Cipollone R. Heat recovery potential and electrical performances in-field investigation on a hybrid PVT module. Appl Energy. 2017;205:44–56. https://doi.org/10.1016/j.apenergy.2017.07.117.

    Article  Google Scholar 

  4. Kasaeian A, Nouri G, Ranjbaran P, Wen D. Solar collectors and photovoltaics as combined heat and power systems: a critical review. Energy Conv Manag. 2018;156:688–705. https://doi.org/10.1016/j.enconman.2017.11.064.

    Article  Google Scholar 

  5. Preet S. Water and phase change material based photovoltaic thermal management systems: a review. Renew Sustain Energy Rev. 2018;82:791–807. https://doi.org/10.1016/j.rser.2017.09.021.

    Article  CAS  Google Scholar 

  6. He W, Chow T-T, Ji J, Lu J, Pei G, Chan L-S. Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water. Appl Energy. 2006;83(3):199–210. https://doi.org/10.1016/j.apenergy.2005.02.007.

    Article  CAS  Google Scholar 

  7. Yazdanifard F, Ebrahimnia-Bajestan E, Ameri M. Performance of a parabolic trough concentrating photovoltaic/thermal system: effects of flow regime, design parameters, and using nanofluids. Energy Convers Manag. 2017;148:1265–77. https://doi.org/10.1016/j.enconman.2017.06.075.

    Article  CAS  Google Scholar 

  8. Evola G, Marletta L. Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector. Sol Energy. 2014;107:12–25. https://doi.org/10.1016/j.solener.2014.05.041.

    Article  Google Scholar 

  9. Yu B, Jiang Q, He W, Liu S, Zhou F, Ji J, et al. Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology. Appl Energy. 2018;215:699–716. https://doi.org/10.1016/j.apenergy.2018.02.017.

    Article  CAS  Google Scholar 

  10. Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111(1):279–88. https://doi.org/10.1007/s10973-012-2291-9.

    Article  CAS  Google Scholar 

  11. Hasan A, McCormack SJ, Huang MJ, Sarwar J, Norton B. Increased photovoltaic performance through temperature regulation by phase change materials: materials comparison in different climates. Sol Energy. 2015;115:264–76. https://doi.org/10.1016/j.solener.2015.02.003.

    Article  CAS  Google Scholar 

  12. Browne MC, Norton B, McCormack SJ. Heat retention of a photovoltaic/thermal collector with PCM. Sol Energy. 2016;133:533–48. https://doi.org/10.1016/j.solener.2016.04.024.

    Article  Google Scholar 

  13. Farzanehnia A, Khatibi M, Sardarabadi M, Passandideh-Fard M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers Manag. 2019;179:314–25. https://doi.org/10.1016/j.enconman.2018.10.037.

    Article  CAS  Google Scholar 

  14. Yang X, Sun L, Yuan Y, Zhao X, Cao X. Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renew Energy. 2018;119:152–9. https://doi.org/10.1016/j.renene.2017.11.094.

    Article  Google Scholar 

  15. Preet S, Bhushan B, Mahajan T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol Energy. 2017;155:1104–20. https://doi.org/10.1016/j.solener.2017.07.040.

    Article  CAS  Google Scholar 

  16. Su D, Jia Y, Alva G, Liu L, Fang G. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials. Energy Convers Manag. 2017;131:79–89. https://doi.org/10.1016/j.enconman.2016.11.002.

    Article  CAS  Google Scholar 

  17. Su Y, Zhang Y, Shu L. Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system. Sol Energy. 2018;159:777–85. https://doi.org/10.1016/j.solener.2017.11.045.

    Article  Google Scholar 

  18. Nada SA, El-Nagar DH, Hussein HMS. Improving the thermal regulation and efficiency enhancement of PCM-integrated PV modules using nano particles. Energy Convers Manag. 2018;166:735–43. https://doi.org/10.1016/j.enconman.2018.04.035.

    Article  CAS  Google Scholar 

  19. Khan MMA, Ibrahim NI, Mahbubul IM, Ali HM, Saidur R, Al-Sulaiman FA. Evaluation of solar collector designs with integrated latent heat thermal energy storage: a review. Sol Energy. 2018;166:334–50. https://doi.org/10.1016/j.solener.2018.03.014.

    Article  CAS  Google Scholar 

  20. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  21. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7164-4.

    Article  Google Scholar 

  22. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39. https://doi.org/10.1007/s10973-017-6773-7.

    Article  CAS  Google Scholar 

  23. Meibodi SS, Kianifar A, Mahian O, Wongwises S. Second law analysis of a nanofluid-based solar collector using experimental data. J Therm Anal Calorim. 2016;126(2):617–25. https://doi.org/10.1007/s10973-016-5522-7.

    Article  CAS  Google Scholar 

  24. Sardarabadi M, Passandideh-Fard M. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Sol Energy Mater Sol Cells. 2016;157:533–42. https://doi.org/10.1016/j.solmat.2016.07.008.

    Article  CAS  Google Scholar 

  25. Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Convers Manag. 2017;148:963–73. https://doi.org/10.1016/j.enconman.2017.06.072.

    Article  CAS  Google Scholar 

  26. Sardarabadi M, Passandideh-Fard M, Maghrebi M-J, Ghazikhani M. Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol Energy Mater Sol Cells. 2017;161:62–9. https://doi.org/10.1016/j.solmat.2016.11.032.

    Article  CAS  Google Scholar 

  27. Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy. 2018;147:636–47. https://doi.org/10.1016/j.energy.2018.01.073.

    Article  CAS  Google Scholar 

  28. Al-Waeli AHA, Sopian K, Chaichan MT, Kazem HA, Ibrahim A, Mat S, et al. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag. 2017;151:693–708. https://doi.org/10.1016/j.enconman.2017.09.032.

    Article  CAS  Google Scholar 

  29. Mousavi S, Kasaeian A, Shafii MB, Jahangir MH. Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system. Energy Convers Manag. 2018;163:187–95. https://doi.org/10.1016/j.enconman.2018.02.039.

    Article  CAS  Google Scholar 

  30. Sardarabadi M, Passandideh-Fard M, Zeinali Heris S. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 2014;66:264–72. https://doi.org/10.1016/j.energy.2014.01.102.

    Article  CAS  Google Scholar 

  31. Khanjari Y, Kasaeian AB, Pourfayaz F. Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl Therm Eng. 2017;115:178–87. https://doi.org/10.1016/j.applthermaleng.2016.12.104.

    Article  CAS  Google Scholar 

  32. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models. Int J Heat Mass Transf. 2014;78:64–75. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.051.

    Article  CAS  Google Scholar 

  33. Ebrahimnia-Bajestan E, Charjouei Moghadam M, Niazmand H, Daungthongsuk W, Wongwises S. Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. Int J Heat Mass Transf. 2016;92:1041–52. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.107.

    Article  CAS  Google Scholar 

  34. Yimin X, Qiang L, Weifeng H. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003;49(4):1038–43. https://doi.org/10.1002/aic.690490420.

    Article  Google Scholar 

  35. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93. https://doi.org/10.1016/j.enconman.2010.06.072.

    Article  CAS  Google Scholar 

  36. Al-Shamani AN, Alghoul MA, Elbreki AM, Ammar AA, Abed AM, Sopian K. Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water based nano-fluids. Energy. 2018;145:770–92. https://doi.org/10.1016/j.energy.2017.11.156.

    Article  CAS  Google Scholar 

  37. Azmi W, Sharma K, Sarma P, Mamat R, Anuar S, Rao VD. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci. 2013;51:103–11.

    Article  CAS  Google Scholar 

  38. Zamfirescu C, Dincer I. Assessment of a new integrated solar energy system for hydrogen production. Sol Energy. 2014;107:700–13. https://doi.org/10.1016/j.solener.2014.05.036.

    Article  CAS  Google Scholar 

  39. Nazzi Ehms JH, De Césaro Oliveski R, Oliveira Rocha LA, Biserni C. Theoretical and numerical analysis on phase change materials (PCM): a case study of the solidification process of erythritol in spheres. Int J Heat Mass Transf. 2018;119:523–32. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.124.

    Article  Google Scholar 

  40. Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf. 2013;61:684–95. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.030.

    Article  Google Scholar 

  41. Evans DL. Simplified method for predicting photovoltaic array output. Sol Energy. 1981;27(6):555–60. https://doi.org/10.1016/0038-092X(81)90051-7.

    Article  Google Scholar 

  42. Yazdanifard F, Ameri M, Ebrahimnia-Bajestan E. Performance of nanofluid-based photovoltaic/thermal systems: a review. Renew Sustain Energy Rev. 2017;76:323–52. https://doi.org/10.1016/j.rser.2017.03.025.

    Article  CAS  Google Scholar 

  43. Hosseinzadeh M, Salari A, Sardarabadi M, Passandideh-Fard M. Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers Manag. 2018;160:93–108. https://doi.org/10.1016/j.enconman.2018.01.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Passandideh-Fard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Musawi, A.I.A., Taheri, A., Farzanehnia, A. et al. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim 137, 623–636 (2019). https://doi.org/10.1007/s10973-018-7972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7972-6

Keywords

Navigation