Skip to main content
Log in

Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Numerous accidents including fires and explosions occurring in transportation and storage of batteries enhance the need of studying the fire performances on batteries. In the current work, series bench-scale tests are conducted using a cone calorimeter to explore the fire behavior of lithium-ion battery. The influence of two key factors, namely state of charge (SOC) and incident external heat flux, on the battery fire characteristics is especially investigated. Combustion behavior, time to ignition (TTI), heat release rate (HRR) and fire risk assessment are obtained. The battery with higher SOC under high incident heat flux presents a fierce combustion process and higher surface temperature than the others. It is noteworthy that the time to ignition and time to peak HRR (TTP) decrease with the SOC, whereas the peak HRR (pHRR) and total heat release (THR) increase overall. On the whole, the increment of incident heat flux causes the decrease in TTI and TTP, while the pHRR and THR increase at higher incident heat flux. And the values of TTI agree well with the classical ignition model. Finally, the fire risk of battery with different SOCs under various incident heat fluxes is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Larsson F, Andersson P, Blomqvist P, Lorén A, Mellander BE. Characteristics of lithium-ion batteries during fire tests. J Power Sources. 2014;271:414–20. https://doi.org/10.1016/j.jpowsour.2014.08.027.

    Article  CAS  Google Scholar 

  2. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158(3):R1.

    Article  CAS  Google Scholar 

  3. Balakrishnan P, Ramesh R, Kumar TP. Safety mechanisms in lithium-ion batteries. J Power Sources. 2006;155(2):401–14.

    Article  CAS  Google Scholar 

  4. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24. https://doi.org/10.1016/j.jpowsour.2012.02.038.

    Article  CAS  Google Scholar 

  5. Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific; 2011. p. 171-9.

  6. Williard N, He W, Hendricks C, Pecht M. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability. Energies. 2013;6(9):4682–95.

    Article  Google Scholar 

  7. Meier F, Woodyard C. Third fire in Tesla Model S reported. 2013.

  8. Gallagher S. Boeing’s Dreamliner batteries ‘inherently unsafe’—and yours may be too. Ars Technica. 2013.

  9. Jhu C-Y, Wang Y-W, Wen C-Y, Shu C-M. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology. Appl Energy. 2012;100:127–31.

    Article  CAS  Google Scholar 

  10. Roth E, Doughty D. Thermal abuse performance of high-power 18650 Li-ion cells. J Power Sources. 2004;128(2):308–18.

    Article  CAS  Google Scholar 

  11. Duh YS, Tsai MT, Kao CS. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. J Therm Anal Calorim. 2017;127(1):983–93.

    Article  CAS  Google Scholar 

  12. Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources. 2015;275:261–73.

    Article  CAS  Google Scholar 

  13. Wen CY, Jhu CY, Wang YW, Chiang CC, Shu CM. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J Therm Anal Calorim. 2012;109(3):1297–302. https://doi.org/10.1007/s10973-012-2573-2.

    Article  CAS  Google Scholar 

  14. Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci. 2012;5(1):5271–80. https://doi.org/10.1039/c1ee02218k.

    Article  CAS  Google Scholar 

  15. Fu Y, Lu S, Li K, Liu C, Cheng X, Zhang H. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources. 2015;273:216–22. https://doi.org/10.1016/j.jpowsour.2014.09.039.

    Article  CAS  Google Scholar 

  16. Huang P, Wang Q, Li K, Ping P, Sun J. The combustion behavior of large scale lithium titanate battery. Sci Rep. 2015;5:7788.

    Article  CAS  Google Scholar 

  17. Wang Q, Huang P, Ping P, Du Y, Li K, Sun J. Combustion behavior of lithium iron phosphate battery induced by external heat radiation. J Loss Prev Process Ind. 2017;49:961–9. https://doi.org/10.1016/j.jlp.2016.12.002.

    Article  CAS  Google Scholar 

  18. Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sources. 2015;285:80–9. https://doi.org/10.1016/j.jpowsour.2015.03.035.

    Article  CAS  Google Scholar 

  19. Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, et al. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63. https://doi.org/10.1007/s10973-015-4751-5.

    Article  CAS  Google Scholar 

  20. Chen M, Liu J, He Y, Yuen R, Wang J. Study of the fire hazards of lithium-ion batteries at different pressures. Appl Therm Eng. 2017;125:1061–74. https://doi.org/10.1016/j.applthermaleng.2017.06.131.

    Article  Google Scholar 

  21. Chen M, Yuen R, Wang J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J Therm Anal Calorim. 2017;129(1):181–8. https://doi.org/10.1007/s10973-017-6158-y.

    Article  CAS  Google Scholar 

  22. Ouyang D, Liu J, Chen M, Wang J. Investigation into the fire hazards of lithium-ion batteries under overcharging. Appl Sci. 2017;7(12):1314.

    Article  Google Scholar 

  23. Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2018;132(1):65–75.

    Article  CAS  Google Scholar 

  24. Shaju K, Bruce PG. Macroporous Li (Ni1/3Co1/3Mn1/3) O2: a high-rate positive electrode for rechargeable lithium batteries. J Power Sources. 2007;174(2):1201–5.

    Article  CAS  Google Scholar 

  25. ISO I. 5660-1: 2015 Reaction-to-fire tests–Heat release, smoke production and mass loss rate-Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneva. Switzerland: International Organization for Standardization. 2015.

  26. Jacoby M. Assessing the safety of lithium-ion batteries. Chem Eng N. 2013;91:33–7.

    Google Scholar 

  27. Quintiere JG. A theoretical basis for flammability properties. Fire Mater. 2010;30(3):175–214.

    Article  Google Scholar 

  28. Delichatsios MA. Ignition times for thermally thick and intermediate conditions in flat and cylindrical geometries. Fire Saf Sci. 2000;6:233–44.

    Article  Google Scholar 

  29. Janssens M. Piloted ignition of wood: a review. Fire Mater. 1991;15(4):151–67.

    Article  CAS  Google Scholar 

  30. Thornton WXV. The relation of oxygen to the heat of combustion of organic compounds. Lond, Edinburgh, and Dublin Philos Mag J Sci. 1917;33(194):196–203.

    Article  CAS  Google Scholar 

  31. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5.

    Article  CAS  Google Scholar 

  32. Fu Y, Lu S, Shi L, Cheng X, Zhang H. Combustion characteristics of electrolyte pool fires for lithium ion batteries. J Electrochem Soc. 2016;163(9):A2022–8. https://doi.org/10.1149/2.0721609jes.

    Article  CAS  Google Scholar 

  33. Schartel B, Hull TR. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2010;31(5):327–54.

    Article  Google Scholar 

  34. Petrella RV. The assessment of full-scale fire hazards from cone calorimeter data. J Fire Sci. 1994;12(1):14–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFC0809500). The authors gratefully acknowledge all of this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ouyang, D., Chen, M. et al. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim 136, 2239–2247 (2019). https://doi.org/10.1007/s10973-018-7899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7899-y

Keywords

Navigation