Skip to main content
Log in

Thermodynamics of Hg2+ and Ag+ adsorption by 3-mercaptopropionic acid-functionalized superparamagnetic iron oxide nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Superparamagnetic iron nanoparticles (SPION) have been functionalized with 3-mercaptopropionic acid (3-MPA), characterized and applied for the removal of Ag+, Hg2+ and Pb2+ metal ions from aqueous solutions by iron oxide (Fe3O4). The heavy metal adsorption has been investigated by means of ICP-OES and isothermal titration calorimetry. Experimental data ware better fitted by Langmuir rather than Freundlich isotherms, and the thermodynamic parameters for the adsorption process of the metal ions on the functionalized SPION nanoparticles (SPION@3-MPA) were obtained. Isothermal titration calorimetry (ITC) is applied to monitor heavy metal adsorption on SPION@3-MPA: the process results to be exothermic for Hg2+ and Ag+, while it is weakly endothermic in the case of Pb2+, and the adsorption enthalpies and entropies have been obtained. The values of the thermodynamic parameters suggest that the Ag+ and Hg2+ ions interact strongly with the thiol groups, while the Pb2+ ions seem to be adsorbed by the material mostly via electrostatic interaction. When compared to other thiol-functionalized materials, the obtained SPION@3-MPA NP can be considered a competitive adsorbent for Ag+ and Hg2+ ions. The comparison between the ICP-OES adsorption rate and the enthalpy trend obtained by ITC supports shows that the latter technique can be a good tool for a fast testing of materials to be applied for heavy metal separation from solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ. 2016;569–570:476–88.

    Article  CAS  PubMed  Google Scholar 

  2. Khan A, Khan S, Khan MA, Qamar Z, Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res. 2015;22:13772–99.

    Article  CAS  Google Scholar 

  3. Sherameti I, Varma A, editors. Heavy metal contamination of soils. Berlin: Springer; 2015.

    Google Scholar 

  4. Kim K-H, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–85.

    Article  CAS  PubMed  Google Scholar 

  5. Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 2016;96:32–48.

    Article  CAS  PubMed  Google Scholar 

  6. Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med. Sci. Monit. 2005;11:RA329–36.

    CAS  PubMed  Google Scholar 

  7. Ratte HT. Annual review bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem. 1999;18:89–108.

    Article  CAS  Google Scholar 

  8. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manag. 2011;92:407–18.

    Article  CAS  Google Scholar 

  9. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater. 2012;211–212:317–31.

    Article  CAS  PubMed  Google Scholar 

  10. Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev. 2013;113:7728–68.

    Article  CAS  PubMed  Google Scholar 

  11. Kefeni KK, Mamba BB, Msagati TAM. Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep Purif Technol. 2017;188:399–422.

    Article  CAS  Google Scholar 

  12. Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG. High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. Chemsuschem. 2010;3:749–57.

    Article  CAS  PubMed  Google Scholar 

  13. Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol. 2007;41:5114–9.

    Article  CAS  PubMed  Google Scholar 

  14. Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:5358.

    Article  CAS  Google Scholar 

  15. Mariani G, Fabbri M, Negrini F, Ribani PL. High-gradient magnetic separation of pollutant from wastewaters using permanent magnets. Sep Purif Technol. 2010;72:147–55.

    Article  CAS  Google Scholar 

  16. Burks T, Avila M, Akhtar F, Göthelid M, Lansåker PC, Toprak MS, Muhammed M, Uheida A. Studies on the adsorption of chromium(VI) onto 3-mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2014;425:36–43.

    Article  CAS  PubMed  Google Scholar 

  17. Morillo D, Uheida A, Pérez G, Muhammed M, Valiente M. Arsenate removal with 3-mercaptopropanoic acid-coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2015;438:227–34.

    Article  CAS  PubMed  Google Scholar 

  18. Kim C, Lee SS, Lafferty BJ, Giammar DE, Fortner JD. Engineered superparamagnetic nanomaterials for arsenic(V) and chromium(VI) sorption and separation: quantifying the role of organic surface coatings. Environ Sci Nano. 2018;5:556–63.

    Article  CAS  Google Scholar 

  19. Melchior A, Lanas SG, Valiente M, Tolazzi M. Thermodynamics of sorption of platinum on superparamagnetic nanoparticles functionalized with mercapto groups. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7408-3.

    Article  Google Scholar 

  20. Cavallo L, Del Piero S, Ducéré J, Fedele R, Melchior A, Morini G, Piemontesi F, Tolazzi M. Key interactions in heterogeneous Ziegler—Natta catalytic systems: structure and energetics of TiCl4-Lewis base complexes. J Phys Chem C. 2007;111:4412–9.

    Article  CAS  Google Scholar 

  21. Melchior A, Peralta E, Valiente M, Tavagnacco C, Endrizzi F, Tolazzi M. Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study. Dalton Trans. 2013;42:6074–82.

    Article  CAS  PubMed  Google Scholar 

  22. Di Bernardo P, Zanonato PL, Melchior A, Portanova R, Tolazzi M, Choppin GR, Wang Z. Thermodynamic and spectroscopic studies of lanthanides (III) complexation with polyamines in dimethyl sulfoxide. Inorg Chem. 2008;47:1155–64.

    Article  CAS  Google Scholar 

  23. Melchior A, Gaillard C, Gràcia Lanas S, Tolazzi M, Billard I, Georg S, Sarrasin L, Boltoeva M. Nickel(II) complexation with nitrate in dry [C4 mim][Tf 2 N] ionic liquid: a spectroscopic, microcalorimetric, and molecular dynamics study. Inorg Chem. 2016;55:3498–507.

    Article  CAS  PubMed  Google Scholar 

  24. Endrizzi F, Di Bernardo P, Zanonato PL, Tisato F, Porchia M, Ahmed Isse A, Melchior A, Tolazzi M. Cu(I) and Ag(I) complex formation with the hydrophilic phosphine 1,3,5-triaza-7-phosphadamantane in different ionic media. How to estimate the effect of a complexing medium. Dalton Trans. 2017;46:1455–66.

    Article  CAS  PubMed  Google Scholar 

  25. Endrizzi F, Melchior A, Tolazzi M, Rao L. Complexation of uranium(VI) with glutarimidoxioxime: thermodynamic and computational studies. Dalton Trans. 2015;44:13835–44.

    Article  CAS  PubMed  Google Scholar 

  26. Del Piero S, Di Bernardo P, Fedele R, Melchior A, Polese P, Tolazzi M. Affinity of polypyridines towards Cd(II) and Co(II) ions: a thermodynamic and DFT study. Eur J Inorg Chem. 2006;2006:3738–45.

    Article  CAS  Google Scholar 

  27. Credendino R, Minenkov Y, Liguori D, Piemontesi F, Melchior A, Morini G, Tolazzi M, Cavallo L. Accurate experimental and theoretical enthalpies of association of TiCl4 with typical Lewis bases used in heterogeneous Ziegler-Natta catalysis. Phys Chem Chem Phys. 2017;19:26996–7006.

    Article  CAS  PubMed  Google Scholar 

  28. Melchior A, Peressini S, Portanova R, Sangregorio C, Tavagnacco C, Tolazzi M. Cobalt(II) and cadmium(II) chelates with nitrogen donors and O2 bonding to Co(II) derivatives. Inorg Chim Acta. 2004;357:3473–82.

    Article  CAS  Google Scholar 

  29. Del Piero S, Melchior A, Polese P, Portanova R, Tolazzi M. N-methylation effects on the coordination chemistry of cyclic triamines with divalent transition metals and their Co(II) dioxygen carriers. Eur J Inorg Chem. 2006;2006:304–14.

    Article  CAS  Google Scholar 

  30. Braga PRS, Costa AA, de Macedo JL, Ghesti GF, de Souza MP, Dias JA, Dias SCL. Liquid phase calorimetric-adsorption analysis of Si-MCM-41: evidence of strong hydrogen-bonding sites. Microporous Mesoporous Mater. 2011;139:74–80.

    Article  CAS  Google Scholar 

  31. Arakaki LNH, Filha VLSA, Germano AFS, Santos SSG, Fonseca MG, Sousa KS, Espínola JGP, Arakaki T. Silica gel modified with ethylenediamine and succinic acid-adsorption and calorimetry of cations in aqueous solution. Thermochim Acta. 2013;556:34–40.

    Article  CAS  Google Scholar 

  32. Silva Filho EC, Lima LCB, Sousa KS, Fonseca MG, Pereira FAR. Calorimetry studies for interaction in solid/liquid interface between the modified cellulose and divalent cation. J Therm Anal Calorim. 2013;114:57–66.

    Article  CAS  Google Scholar 

  33. Vieira Eunice FS, de Simoni JA, Airoldi C. Interaction of cations with SH-modified silica gel: thermochemical study through calorimetric titration and direct extent of reaction determination. J Mater Chem. 1997;7:2249–52.

    Article  Google Scholar 

  34. da Fonseca M. Phyllosilicate-like structure anchored silylating agents: calorimetric data on divalent cation-aminated centre interactions in the lamellar cavity. J Chem Soc Dalton Trans. 1999;259:3687–92.

    Article  Google Scholar 

  35. Evangelista SM, De Oliveira E, Castro GR, Zara LF, Prado AGS. Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing mercury from water solution. Surf Sci. 2007;601:2194–202.

    Article  CAS  Google Scholar 

  36. Zhang N, Zang GL, Shi C, Yu HQ, Sheng GP. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(II) removal. J Hazard Mater. 2016;316:11–8.

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Keller AA. Isothermal titration microcalorimetry to determine the thermodynamics of metal ion removal by magnetic nanoparticle sorbents. Environ Sci Nano. 2016;3:1206–14.

    Article  CAS  Google Scholar 

  38. Elwakeel KZ, El-Sayed GO, Darweesh RS. Fast and selective removal of silver(I) from aqueous media by modified chitosan resins. Int J Miner Process. 2013;120:26–34.

    Article  CAS  Google Scholar 

  39. Liang X, Xu Y, Sun G, Wang L, Sun Y, Sun Y, Qin X. Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium. Chem Eng J. 2011;174:436–44.

    Article  CAS  Google Scholar 

  40. Gràcia Lanas S, Valiente M, Aneggi E, Trovarelli A, Tolazzi M, Melchior A. Efficient fluoride adsorption by mesoporous hierarchical alumina microspheres. RSC Adv. 2016;6:42288–96.

    Article  CAS  Google Scholar 

  41. Liu Y, Sturtevant JM. Significant discrepancies between van’t Hoff and calorimetric enthalpies. II. Protein Sci. 1995;4:2559–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaires JB. Possible origin of differences between van’t Hoff and calorimetric enthalpy estimates. Biophys Chem. 1997;64:15–23.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y, Sturtevant JM. Significant discrepancies between van’t Hoff and calorimetric enthalpies. III. Biophys Chem. 1997;64:121–6.

    Article  CAS  PubMed  Google Scholar 

  44. Mizoue LS, Tellinghuisen J. Calorimetric vs. van’t Hoff binding enthalpies from isothermal titration calorimetry: Ba2+-crown ether complexation. Biophys Chem. 2004;110:15–24.

    Article  CAS  PubMed  Google Scholar 

  45. Welsch N, Lu Y, Dzubiella J, Ballauff M. Adsorption of proteins to functional polymeric nanoparticles. Polymer (Guildf). 2013;54:2835–49.

    Article  CAS  Google Scholar 

  46. Teodoro FS, do Ramos SNC, Elias MMC, Mageste AB, Ferreira GMD, da Silva LHM, Gil LF, Gurgel LVA, Adarme OFH. Synthesis and application of a new carboxylated cellulose derivative. Part II: removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution. J Colloid Interface Sci. 2017;487:266–80.

    Article  CAS  PubMed  Google Scholar 

  47. Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res. 2005;20:3255–64.

    Article  CAS  Google Scholar 

  48. Madrakian T, Afkhami A, Zadpour B, Ahmadi M. New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. J Ind Eng Chem. 2015;21:1160–6.

    Article  CAS  Google Scholar 

  49. Rangabhashiyam S, Anu N, Giri Nandagopal MS, Selvaraju N. Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J Environ Chem Eng. 2014;2:398–414.

    Article  CAS  Google Scholar 

  50. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M. Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem. 2007;22:249–75.

    Article  CAS  Google Scholar 

  51. Kammerer J, Carle R, Kammerer DR. Adsorption and ion exchange: basic principles and their application in food processing. J Agric Food Chem. 2011;59:22–42.

    Article  CAS  PubMed  Google Scholar 

  52. Azizian S, Eris S, Wilson LD. Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chem Phys. 2018;513:99–104.

    Article  CAS  Google Scholar 

  53. Drago RS, Dias SC, Torrealba M, De Lima L. Calorimetric and spectroscopic investigation of the acidity of HZSM-5. J Am Chem Soc. 1997;119:4444–52.

    Article  CAS  Google Scholar 

  54. del Piero S, Melchior A, Polese P, Portanova R, Tolazzi M. A novel multipurpose excel tool for equilibrium speciation based on Newton–Raphson method and on a hybrid genetic algorithm. Ann Chim. 2006;96:29–49.

    Article  PubMed  Google Scholar 

  55. Polese P, Tolazzi M, Melchior A. cEST: a flexible tool for calorimetric data analysis. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7409-2.

    Article  Google Scholar 

  56. Di Bernardo P, Zanonato PL, Benetollo F, Melchior A, Tolazzi M, Rao L. Energetics and structure of uranium(VI)-acetate complexes in dimethyl sulfoxide. Inorg Chem. 2012;51:9045–55.

    Article  CAS  PubMed  Google Scholar 

  57. Kumar R, Inbaraj BS, Chen BH. Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material. Mater Res Bull. 2010;45:1603–7.

    Article  CAS  Google Scholar 

  58. Di Bernardo P, Melchior A, Portanova R, Tolazzi M, Zanonato PL. Complex formation of N-donor ligands with group 11 monovalent ions. Coord Chem Rev. 2008;252:1270–85.

    Article  CAS  Google Scholar 

  59. Del Piero S, Fedele R, Melchior A, Portanova R, Tolazzi M, Zangrando E. Solvation effects on the stability of silver(I) complexes with pyridine-containing ligands studied by thermodynamic and DFT methods. Inorg Chem. 2007;46:4683–91.

    Article  CAS  PubMed  Google Scholar 

  60. Melchior A, Peralta E, Valiente M, Tolazzi M. Solvent effect on heavy metal coordination with thioether ligands: a thermodynamic and theoretical study. Polyhedron. 2014;75:88–94.

    Article  CAS  Google Scholar 

  61. Jiang W, Lamb JD, Bradshaw JS, Izatt RM, Wu G. High-specificity Thiacrown ether reagents for silver(I) over bivalent mercury and lead. Thermodynamic and13C NMR relaxation time studies. J Am Chem Soc. 1991;113:6538–41.

    Article  Google Scholar 

  62. Hancock RD, Martell AE. Ligand design for selective complexation of metal ions in aqueous solution. Chem Rev. 1989;89:1875–914.

    Article  CAS  Google Scholar 

  63. Yari S, Abbasizadeh S, Mousavi SE, Moghaddam MS, Moghaddam AZ. Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Saf Environ Prot. 2015;94:159–71.

    Article  CAS  Google Scholar 

  64. MacDougall FH, Topol LE. Ionic equilibria in aqueous and mixed solvent solutions of silver acetate and silver monochloroacetate. J Phys Chem. 1952;56:1090–3

    Article  CAS  Google Scholar 

  65. Giordano TH. Anglesite (PbSO4) solubility in acetate solutions: the determination of stability constants for lead acetate complexes to 85 °C. Geochim Cosmochim Acta Pergamon. 1989;53:359–66.

    Article  CAS  Google Scholar 

  66. Ravichandran M. Interactions between mercury and dissolved organic matter—a review. Chemosphere Pergamon. 2004;55:319–31.

    Article  CAS  Google Scholar 

  67. Fu L, Zhang L, Wang S, Peng J, Zhang G. Silica nanoparticles modified with trithiocyanuric acid as a potential adsorbent for removal of Ag+ from aqueous solutions. Water Air Soil Pollut. 2017;228:273.

    Article  CAS  Google Scholar 

  68. Quang DV, Lee JE, Kim JK, Kim YN, Shao GN, Kim HT. A gentle method to graft thiol-functional groups onto silica gel for adsorption of silver ions and immobilization of silver nanoparticles. Powder Technol. 2013;235:221–7.

    Article  CAS  Google Scholar 

  69. Xin L, Yin Q, Xin Z, Zhang Z. Powerful adsorption of silver(I) onto thiol-functionalized polysilsesquioxane microspheres. Chem Eng Sci. 2010;65:6471–7.

    Article  CAS  Google Scholar 

  70. Zhang S, Zhang Y, Liu J, Xu Q, Xiao H, Wang X, Xu H, Zhou J. Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chem Eng J. 2013;226:30–8.

    Article  CAS  Google Scholar 

  71. Zhang C, Sui J, Li J, Tang Y, Cai W. Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem Eng J. 2012;210:45–52.

    Article  CAS  Google Scholar 

  72. Zhu H, Shen Y, Wang Q, Chen K, Wang X, Zhang G, Yang J, Guo Y, Bai R. Highly promoted removal of Hg(II) with magnetic CoFe2O4@SiO2 core–shell nanoparticles modified by thiol groups. RSC Adv. 2017;7:39204–15.

    Article  CAS  Google Scholar 

  73. Odio OF, Lartundo-Rojas L, Palacios EG, Martínez R, Reguera E. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions. Appl Surf Sci. 2016;386:160–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Eleonora Aneggi for the assistance with material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Melchior.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanas, S.G., Valiente, M., Tolazzi, M. et al. Thermodynamics of Hg2+ and Ag+ adsorption by 3-mercaptopropionic acid-functionalized superparamagnetic iron oxide nanoparticles. J Therm Anal Calorim 136, 1153–1162 (2019). https://doi.org/10.1007/s10973-018-7763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7763-0

Keywords

Navigation