Skip to main content
Log in

Performance analysis of a double-pass solar air heater system with asymmetric channel flow passages

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work seeks to address the forced convection heat transfer behaviour of a double-pass solar air heater system (DPSAHS) provided with asymmetric channel flow configuration used for solar drying of agro-products. Outdoor experiments were performed on a DPSAHS having a constant channel depth ratio of 1.5. Thermal response of the DPSAHS under different influencing parameters such as flow rate, channel depth, and thermophysical properties of the working fluid was experimentally determined. The influence of ambient parameters such as solar intensity, ambient temperature, wind speed, and relative humidity on the thermodynamic behaviour of the DPSAHS was also investigated. Among which, solar intensity and ambient temperature were found to be the major parameters influencing the energy and exergy efficiency followed by wind speed. Relative humidity was found to have the least percentage contribution towards the thermal characteristics of the system. Overall thermal efficiency and exergy efficiency were found to vary in the range of 20–41% and 5.6–18% at two different mass flow rates of 0.02 kg s−1 and 0.03 kg s−1, respectively. The results also inferred that the influence of thermophysical property variation on the thermodynamic performance depends upon the operating temperature range and on the nature of working fluid. Air temperature in the lower channel was found to be an average 3 °C higher than that of upper channel passage corresponding to two different mass flow rates. Hence, the thermodynamic behaviour of DPSAHS was found to be strongly influenced by the variation in channel depth, ambient parameters, and mass flow rate. The obtained experimental results were also compared with the available literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

\(A\) :

Area (m2)

\(C_{\text{p}}\) :

Specific heat (J kg−1 K−1)

\(D_{\text{c}}\) :

Depth of channel passage (m)

\(D_{\text{h}}\) :

Hydraulic diameter (m)

\(\dot{E}\) :

Energy (J)

\(\dot{E}_{\text{x}}\) :

Exergy (J)

\(f\) :

Friction factor

\(G\) :

Solar intensity (W m−2)

\(h\) :

Enthalpy (J kg−1) or heat transfer coefficient (W m−2K−1)

\(k\) :

Thermal conductivity (W m−1 K−1)

\(K\) :

Head-loss factor

\(L\) :

Length of the channel passage (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(Nu\) :

Nusselt number

\(\Delta p\) :

Pressure drop (N m−2)

\(Re\) :

Reynolds number

\(s\) :

Entropy (J K−1)

\(S_{{_{\text{gen}} }}^{ \cdot }\) :

Entropy generation (J K−1)

\(T\) :

Temperature (°C)

\(U\) :

Overall heat transfer coefficient (W m−2 K−1)

\(V\) :

Velocity (m s−1)

\(W\) :

Width of the channel passage (m)

\(\alpha\) :

Absorptivity

\(\epsilon\) :

Product of transmittance–absorptance

\(\mu\) :

Dynamic viscosity (Pa s)

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Stefan–Boltzmann constant

\(\tau\) :

Transmissivity

\(\eta\) :

Efficiency

\(a\) :

Ambient

\({\text{avg}}\) :

Average

\(b\) :

Bottom plate

\(c\) :

Collector

\(e\) :

Edge

\({\text{en}}\) :

Entry

\({\text{ext}}\) :

Exit

\(f\) :

Fluid

\(g\) :

Glazing cover

\({\text{ins}}\) :

Insulation

\(p\) :

Absorber plate

\(s\) :

Sun or sides

\(w\) :

Wind

\(I\) :

Overall energy analysis

\(II\) :

Exergy analysis

References

  1. Suzuki A. General theory of exergy-balance analysis and application to solar collectors. Energy. 1988;13(2):153–60. https://doi.org/10.1016/0360-5442(88),90040-0.

    Article  Google Scholar 

  2. Ajam H, Farahat S, Sarhaddi F. Exergetic optimization of solar air heaters and comparison with energy analysis. Int J Thermodyn. 2005;8(4):183–90.

    Google Scholar 

  3. Hernández AL, Quiñonez JE. Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow. Renew Energy. 2013;55:380–91. https://doi.org/10.1016/j.renene.2012.12.050.

    Article  Google Scholar 

  4. Velmurugan P, Kalaivanan R. Energy and exergy analysis of multi-pass flat plate solar air heater—an analytical approach. Int J Green Energy. 2015;12(8):810–20. https://doi.org/10.1080/15435075.2014.888662.

    Article  CAS  Google Scholar 

  5. Hollands KGT, Shewen EC. Optimization of flow passage geometry for air-heating, plate-type solar collectors. J SolEnergy Eng. 1981;103(4):323–30. https://doi.org/10.1115/1.3266260.

    Article  Google Scholar 

  6. Verma R, Chandra R, Garg HP. Optimization of solar air heaters of different designs. Renew Energy. 1992;2(4–5):521–31. https://doi.org/10.1016/0960-1481(92)90091-G.

    Article  CAS  Google Scholar 

  7. Mortazavi A, Ameri M. Conventional and advanced exergy analysis of solar flat plate air collectors. Energy. 2018;142:277–88. https://doi.org/10.1016/j.energy.2017.10.035.

    Article  Google Scholar 

  8. Gupta MK, Kaushik SC. Exergetic performance evaluation and parametric studies of solar air heater. Energy. 2008;33(11):1691–702. https://doi.org/10.1016/j.energy.2008.05.010.

    Article  Google Scholar 

  9. Hegazy AA. Performance of flat plate solar air heaters with optimum channel geometry for constant/variable flow operation. Energy Convers Manag. 2000;41(4):401–17. https://doi.org/10.1016/S0196-8904(99),00052-7.

    Article  Google Scholar 

  10. Sun W, Ji J, He W. Influence of channel depth on the performance of solar air heaters. Energy. 2010;35(10):4201–7. https://doi.org/10.1016/j.energy.2010.07.006.

    Article  Google Scholar 

  11. Kalogirou SA, Karellas S, Badescu V, Braimakis K. Exergy analysis on solar thermal systems: a better understanding of their sustainability. Renew Energy. 2016;85:1328–33. https://doi.org/10.1016/j.renene.2015.05.037.

    Article  Google Scholar 

  12. Benli H. Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew Energy. 2013;50:58–67. https://doi.org/10.1016/j.renene.2012.06.022.

    Article  Google Scholar 

  13. Handbook, A.S.H.R.A.E. American Society of Heating. Refrigeration and Air-Conditioning Engineers, Inc. 2001.

  14. Esen H, Ozgen F, Esen M, Sengur A. Artificial neural network and wavelet neural network approaches for modelling of a solar air heater. Expert Syst Appl. 2009;36(8):11240–8. https://doi.org/10.1016/j.eswa.2009.02.073.

    Article  Google Scholar 

  15. Benli H. Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks. Int J Heat Mass Transf. 2013;60:1–7. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.042.

    Article  Google Scholar 

  16. Islamoglu Y, Kurt A. Heat transfer analysis using ANNs with experimental data for air flowing in corrugated channels. Int J Heat Mass Transf. 2004;47(6–7):1361–5. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.031.

    Article  CAS  Google Scholar 

  17. Gunasekar N, Mohanraj M, Velmurugan V. Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps. Energy. 2015;93:908–22. https://doi.org/10.1016/j.energy.2015.09.078.

    Article  Google Scholar 

  18. Esen H. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build Environ. 2008;43(6):1046–54. https://doi.org/10.1016/j.buildenv.2007.02.016.

    Article  Google Scholar 

  19. McAdams WH. Heat transmission. 3rd ed. New York: McGraw Hill; 1954.

    Google Scholar 

  20. Duffie JA, Beckman WA. Solar engineering of thermal processes. Newyork: Wiley; 1982.

    Google Scholar 

  21. Bahrehmand D, Ameri M. Energy and exergy analysis of different solar air collector systems with natural convection. Renew Energy. 2015;74:357–68. https://doi.org/10.1016/j.renene.2014.08.028.

    Article  CAS  Google Scholar 

  22. Dincer I. Thermodynamics, exergy and environmental impact. Energy Sources. 2000;22(8):723–32. https://doi.org/10.1080/00908310050120272.

    Article  CAS  Google Scholar 

  23. Karsli S. Performance analysis of new-design solar air collectors for drying applications. Renew Energy. 2007;32(10):1645–60. https://doi.org/10.1016/j.renene.2006.08.005.

    Article  CAS  Google Scholar 

  24. Altfeld K, Leiner W, Fiebig M. Second law optimization of flat-plate solar air heaters. Part I: the concept of net exergy flow and the modeling of solar air heaters. Sol Energy. 1988;41(2):127–32. https://doi.org/10.1016/0038-092X(88),90128-4.

    Article  CAS  Google Scholar 

  25. Kumar RA, Babu BG, Mohanraj M. Thermodynamic performance of forced convection solar air heaters using pin–fin absorber plate packed with latent heat storage materials. J Therm Anal Calorim. 2016;126(3):1657–78. https://doi.org/10.1007/s10973-016-5665-6.

    Article  CAS  Google Scholar 

  26. Chabane F, Moummi N, Benramache S. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. J Adv Res. 2014;5(2):183–92. https://doi.org/10.1016/j.jare.2013.03.001.

    Article  PubMed  Google Scholar 

  27. Forson FK, Nazha MA, Rajakaruna H. Experimental and simulation studies on a single pass, double duct solar air heater. Energy Convers Manag. 2003;44(8):1209–27. https://doi.org/10.1016/S0196-8904(02),00139-5.

    Article  Google Scholar 

  28. Alta D, Bilgili E, Ertekin C, Yaldiz O. Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl Energy. 2010;87(10):2953–73. https://doi.org/10.1016/j.apenergy.2010.04.016.

    Article  CAS  Google Scholar 

  29. Languri EM, Taherian H, Hooman K, Reisel J. Enhanced double-pass solar air heater with and without porous medium. Int J Green Energy. 2011;8(6):643–54. https://doi.org/10.1080/15435075.2011.600379.

    Article  Google Scholar 

  30. Kumar RA, Babu BG, Mohanraj M. Experimental investigations on a forced convection solar air heater using packed bed absorber plates with phase change materials. Int J Green Energy. 2017;14(15):1238–55. https://doi.org/10.1080/15435075.2017.1330753.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A.K., Kunal, G., Srinivas, M. et al. Performance analysis of a double-pass solar air heater system with asymmetric channel flow passages. J Therm Anal Calorim 136, 21–38 (2019). https://doi.org/10.1007/s10973-018-7762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7762-1

Keywords

Navigation