Skip to main content
Log in

Effect of plasticizer dibutyl phthalate on the thermal decomposition of nitrocellulose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper aims to investigate the effects of plasticizer dibutyl phthalate (DBP) on the thermal decomposition of nitrocellulose (NC) by using a series of analytical apparatuses. In the present study, the detailed structures of pure NC (NC-P) and NC with DBP (NC-D) were revealed by scanning electron microscope. It was found that the fibers in NC-D are more closely aligned than those in NC-P, which makes the thermal behaviors of NC-D different from NC-P. The thermal stability of both NC-P and NC-D was examined by means of simultaneous TG-DSC apparatus (STA). Three different kinetic methods (Kissinger–Akahira–Sunose method, Ozawa–Flynn–Wall method, and Friedman method) were applied for determining the activation energy E of these two NC samples. Moreover, the experimental data were compared with sigmoidal models and pre-exponential factor was calculated by compensation effect. Besides, in situ Fourier transform infrared (FTIR) and a TGA instrument coupled with Frontier FTIR spectrometer were employed to investigate the characteristic functional groups of decomposition residues and gaseous products at different temperatures, respectively. The results show that NC-P and NC-D have similar decomposition products and decomposition mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 1

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor

c :

A parameter of random scission kinetic functions

a − b :

Compensation effect parameters

E :

Activation energy (kJ mol−1)

f(α):

The dependence of the reaction rate on the extent of conversion

g(α):

The integral form of the reaction model

k(T):

The dependence of the reaction rate on temperature

m :

A parameter of random scission kinetic functions

m t :

Real-time sample mass in TG (mg)

m f :

Mass after the reaction in TG (mg)

m i :

Initial sample mass in TG (mg)

n :

A constant in describing reaction model

p(x):

Temperature integral

R :

One part of nitrocellulose, i.e., [C6H7O2(OH)3–x(ONO2)x–1]n

R 0 :

Gas constant (J mol−1 K−1)

R 2 :

Pearson’s correlation coefficient

t :

Time

T :

Temperature (°C)

T α :

Temperature at an fixed α

T on :

Onset decomposition temperature

T max :

Maximum decomposition temperature

V :

Stretching

W :

Normalized mass

α :

Extent of conversion

β :

Heating rate

τ :

Deformation

ω :

Wag

i:

Different heating rates

max:

Maximum

n:

Degree of polymerization

on:

Onset

s:

Symmetric

as:

Antisymmetric

x:

The number of –ONO2

0.5:

α = 0.5

References

  1. Ossa MÁFDL, López-López M, Torre M, García-Ruiz C, et al. Analytical techniques in the study of highly-nitrated nitrocellulose. TrAC Trends Anal Chem. 2010;30(11):1740–55.

    Article  Google Scholar 

  2. Katoh K, Ito S, Ogata Y, Kasamatsu JI, Miya H, Yamamoto M, et al. Effect of industrial water components on thermal stability of nitrocellulose. J Therm Anal Calorim. 2010;99(1):159–64.

    Article  CAS  Google Scholar 

  3. Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7235-6.

    Article  Google Scholar 

  4. Fu G, Wang J, Yan M. Anatomy of Tianjin Port fire and explosion: process and causes. Process Saf Prog. 2016;35(3):216–20.

    Article  Google Scholar 

  5. Zhao B. Facts and lessons related to the explosion accident in Tianjin Port, China. Nat Hazards. 2016;84(1):707–13.

    Article  Google Scholar 

  6. Katoh K, Soramoto T, Higashi E, Kawaguchi S, Kumagae K, Ito S, et al. Influence of water on the thermal stability of nitrocellulose. Sci Technol Energ Mater. 2014;75(1–2):44–9.

    CAS  Google Scholar 

  7. Hassan MA. Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose. J Hazard Mater. 2001;88(1):33–49.

    Article  CAS  Google Scholar 

  8. Lindblom T. Reactions in stabilizer and between stabilizer and nitrocellulose in propellants. Propellant Explos Pyrotech Int J Dealing Sci Technol Asp Energ Mater. 2002;27(4):197–208.

    Article  CAS  Google Scholar 

  9. Trache D, Tarchoun AF. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci. 2018;53(1):100–23.

    Article  CAS  Google Scholar 

  10. He Y, He Y, Liu J, Li P, Chen M, Wei R, et al. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202–12.

    Article  CAS  Google Scholar 

  11. Liu JH, Wang J, Xie QM, Wang JH, Tao CF, Yuen R. Effect of bulk density on the combustion property of nitrocellulose with isopropanol humectant. Propellants Explos Pyrotech. 2018;43(5):445–52.

    Article  CAS  Google Scholar 

  12. Wei R, Huang S, Huang Q, Ouyang D, Chen Q, Yuen R, et al. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7410-9.

    Article  Google Scholar 

  13. Guo S, Wang Q, Sun J, Liao X, Wang ZS. Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater. 2009;168(1):536–41.

    Article  CAS  Google Scholar 

  14. Wei R, He Y, Liu J, He Y, Mi W, Yuen R, et al. Experimental study on the fire properties of nitrocellulose with different structures. Mater (Basel). 2017;10(3):316.

    Article  Google Scholar 

  15. Liu J, Chen M. A simplified method to predict the heat release rate of industrial nitrocellulose materials. Appl Sci. 2018;8(6):910.

    Article  Google Scholar 

  16. Shao ZQ, Wang WJ. Structure and properties of cellulose nitrate. Beijing: National Defense Industry Press; 2011 (in Chinese).

    Google Scholar 

  17. Phillips RW, Orlick CA, Steinberger R. The kinetics of the thermal decomposition of nitrocellulose. J Phys Chem. 1955;59(10):1034–9.

    Article  CAS  Google Scholar 

  18. Jutier JJ, Harrison Y, Premont S, Prud’Homme RE. A nonisothermal Fourier transform infrared degradation study of nitrocelluloses derived from wood and cotton. J Appl Polym Sci. 1987;33(4):1359–75.

    Article  CAS  Google Scholar 

  19. Kumita Y, Wada Y, Arai M, Tamura M. A study on thermal stability of nitrocellulose. J Jpn Explos Soc. 2002;63(5):271–4.

    CAS  Google Scholar 

  20. Makashir P, Mahajan R, Agrawal J. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal. 1995;45(3):501–9.

    Article  CAS  Google Scholar 

  21. Wang Y, Liu R, Ning B, Pan Q, Hu R. A study of the thermal decomposition mechanism of nitrocellulose. Energ Mater Chengdu. 1998;6:157–68.

    CAS  Google Scholar 

  22. Jin M, Luo N, Li G, Luo Y. The thermal decomposition mechanism of nitrocellulose aerogel. J Therm Anal Calorim. 2015;121(2):901–8.

    Article  CAS  Google Scholar 

  23. Binke N, Rong L, Xianqi C, Yuan W, Hu RZ, Qingsen Y. Study on the melting process of nitrocellulose by thermal analysis method. J Therm Anal Calorim. 1999;58(2):249–56.

    Article  CAS  Google Scholar 

  24. Drysdale D. An introduction to fire dynamics. Hoboken: Wiley; 2011.

    Book  Google Scholar 

  25. Jessup RS, Prosen E. Heats of combustion and formation of cellulose and nitrocellulose (cellulose nitrate). J Res Natl Bur Stand. 1950;44:387.

    Article  CAS  Google Scholar 

  26. Jiang L, Xiao HH, He JJ, Sun Q, Gong L, Sun JH. Application of genetic algorithm to pyrolysis of typical polymers. Fuel Process Technol. 2015;138(7):48–55.

    Article  CAS  Google Scholar 

  27. Xu L, Jiang Y, Wang L. Thermal decomposition of rape straw: pyrolysis modeling and kinetic study via particle swarm optimization. Energy Convers Manag. 2017;146:124–33.

    Article  CAS  Google Scholar 

  28. Jiang L, Zhang D, Li M, He J-J, Gao Z-H, Zhou Y, et al. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel. 2018;222:11–20.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  30. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  32. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  33. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  34. Friedman HL (ed). Kinetics of thermal degradation of char–forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6(1):183–95.

    Article  Google Scholar 

  35. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta. 2013;552:54–9.

    Article  Google Scholar 

  36. Sánchezjiménez PE, Pérezmaqueda LA, Perejón A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114(30):7868–76.

    Article  Google Scholar 

  37. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95(5):733–9.

    Article  Google Scholar 

  38. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Constant rate thermal analysis for thermal stability studies of polymers. Polym Degrad Stab. 2011;96(5):974–81.

    Article  Google Scholar 

  39. Mamleev V, Bourbigot S, Bras ML, Yvon J, Lefebvre J. Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition. Chem Eng Sci. 2006;61(4):1276–92.

    Article  CAS  Google Scholar 

  40. Varhegyi G, Jakab E Jr, Antal MJ. Is the Broido–Shafizadeh model for cellulose pyrolysis true? Energy Fuels. 1994;8(6):1345–52.

    Article  CAS  Google Scholar 

  41. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Pascual-Cosp J, Benítez-Guerrero M, Criado JM. An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose. 2011;18(6):1487–98.

    Article  Google Scholar 

  42. Mamleev V, Bourbigot S, Bras ML, Yvon J. The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps. J Anal Appl Pyrol. 2009;84(1):1–17.

    Article  CAS  Google Scholar 

  43. Vyazovkin S. Advanced isoconversional method. J Therm Anal Calorim. 1997;49(3):1493–9.

    Article  CAS  Google Scholar 

  44. Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.

    Article  CAS  Google Scholar 

  45. Herzberg G Jr, Bryce L. Infrared and Raman spectra of polyatomic molecules. Journal of Chemical Physics. 1941;9(11):780–5.

    Article  Google Scholar 

  46. Ling-Xue YI, Gao L, Zhao LJ, Jiang C, Zhao K. Dibutyl phthalate theoretical analysis and detection in infrared. Spectrosc Spectr Anal. 2016;36(9):2782–92.

    Google Scholar 

  47. Moharram MA, Nasr TZAE, Hakeem NA. X-Ray diffraction and infrared studies on the effect of thermal treatments on cotton celluloses I and II. J Polym Sci Polym Lett Ed. 1981;19(4):183–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51376172) and the Grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (contract Grant Number CityU 11301015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Huang, S., Wang, Z. et al. Effect of plasticizer dibutyl phthalate on the thermal decomposition of nitrocellulose. J Therm Anal Calorim 134, 953–969 (2018). https://doi.org/10.1007/s10973-018-7521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7521-3

Keywords

Navigation