Skip to main content
Log in

Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) numerical simulation is performed to simulate the laminar forced convection of a nanofluid in a ribbed channel with apart heating (cooling) sources using lattice Boltzmann method (LBM). The multi-walled carbon nanotubes–iron oxide nanoparticles/water hybrid nanofluid (MWCNT–Fe3O4/water hybrid nanofluid) is used in this simulation. The velocity field, temperature distribution and heat transfer rate are numerically analyzed with the streamlines and isotherm patterns employing of a house code. In addition, the effect of Reynolds number (Re = 25, 50, 75 and 100), nanoparticle solid volume fraction (ϕ = 0, 0.001, 0.003) and ratio of the blocks height (A = 0.2, 0.3, 0.4) are measured. The results are validated against the results reported in the literature, and a good agreement is reported. The obtained results show a maximum value of 16.49% increase in the average heat transfer coefficient for all the considered cases relative to the base fluid. Moreover, the local Nusselt number proves that the use of blocks on the channel walls can increase the amount of heat transfer. Finally, the average Nusselt number shows a linear dependence on the increasing ratio of blocks height for constant solid volume fraction. The results of this study apply to the industrial equipment heating and cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

h/H, ratio of the blocks’ height to the channel’s height

B :

B = l/H, ratio of the distance between two consecutive blocks to the height of the channel

C :

Lattice speed (m/s)

c p :

Specific heat capacity at constant pressure (J/kg K)

d :

Nanoparticle diameter (m)

e :

Streaming speed for single particle

f :

Density distribution function

f eq :

Equilibrium density distribution function

g :

Energy distribution function

g eq :

Equilibrium energy distribution function

H :

Channel height (m)

K :

Thermal conductivity (W/(m K))

k B :

Boltzmann constant (J/K)

L :

Length of the channel (m)

Nu :

Local Nusselt number

Pr :

Prandtl number, ν/α

Re :

Reynolds number, uin2H/ν

T :

Time (s)

T :

Temperature (K)

T in :

Inlet temperature (K)

T b :

Bulk temperature (K)

U in :

U-component at the channel inlet (m s−1)

u, v :

Velocity components (m s−1)

u :

Velocity vector (m s−1)

x, y :

Cartesian coordinates (m)

ω :

Weight function

α :

Thermal diffusivity (m−2 s−1)

β :

Thermal expansion coefficient (K−1)

µ :

Dynamic viscosity (kg m−1 s−1)

δx :

Lattice spacing (m)

δy :

Lattice spacing (m)

δt :

Time step (s)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density of fluid (kg m−3)

τ g :

Dimensionless single relaxation time for the heat transfer computation

τ ν :

Dimensionless single relaxation time for the flow computation

ϕ :

Solid volume fraction

c:

Cold

f:

Fluid

h:

Hot

i:

Move direction of single particle

in:

Inlet

nf:

Nanofluid

p:

Particle

out:

Outlet

w:

Wall

′:

Dimensional quantity

References

  1. Nazari M, Kayhani MH, Mohebbi R. Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. Int J Mod Phys C. 2013;24(09):1350060.

    Article  Google Scholar 

  2. Nazari M, Mohebbi R, Kayhani MH. Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: lattice Boltzmann simulation. J Nonnewton Fluid Mech. 2014;204:38–49.

    Article  CAS  Google Scholar 

  3. Mohebbi R, Nazari M, Kayhani MH. Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. J Appl Mech Tech Phys. 2016;57(1):55–68.

    Article  CAS  Google Scholar 

  4. Mohebbi R, Heidari H. Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities. Int J Mod Phys C. 2017;28(03):1750042.

    Article  CAS  Google Scholar 

  5. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.

    Article  CAS  Google Scholar 

  6. Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425–35.

    Article  CAS  Google Scholar 

  7. Mohebbi R, Rashidi MM, Izadi M, Sidik NAC, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.

    Article  CAS  Google Scholar 

  8. Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.

    Article  Google Scholar 

  9. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a⊥ shaped cavity filled by a MWCNT–Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.

    Article  CAS  Google Scholar 

  10. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):32001.

    Article  Google Scholar 

  11. Esfahani JA, Akbarzadeh M, Rashidi S, Rosen MA, Ellahi R. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. Int J Heat Mass Transf. 2017;109:1162–71.

    Article  CAS  Google Scholar 

  12. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology. Powder Technol. 2017;313:99–111.

    Article  Google Scholar 

  13. Ellahi R, Tariq MH, Hassan M, Vafai K. On boundary layer nano-ferroliquid flow under the influence of low oscillating stretchable rotating disk. J Mol Liq. 2017;229:339–45.

    Article  CAS  Google Scholar 

  14. Shirvan KM, Ellahi R, Mamourian M, Moghiman M. Effects of wavy surface characteristics on natural convection heat transfer in a cosine corrugated square cavity filled with nanofluid. Int J Heat Mass Transf. 2017;107:1110–8.

    Article  Google Scholar 

  15. Ijaz N, Zeeshan A, Bhatti MM, Ellahi R. Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J Mol Liq. 2018;250:80–7.

    Article  CAS  Google Scholar 

  16. Zeeshan A, Shehzad N, Ellahi R. Analysis of activation energy in Couette–Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 2017;8:502.

    Article  Google Scholar 

  17. Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10.

    Article  CAS  Google Scholar 

  18. Mehryan SA, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7380-y.

    Article  Google Scholar 

  19. Izadi M, Behzadmehr A, Shahmardan MM. Effects of inclination angle on mixed convection heat transfer of a nanofluid in a square cavity. Int J Comput Methods Eng Sci Mech. 2015;16(1):11–21.

    Article  CAS  Google Scholar 

  20. Izadi M, Mehryan SA, Sheremet MA. Natural convection of CuO–water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition. J Taiwan Inst Chem Eng. 2018;88:89–103.

    Article  CAS  Google Scholar 

  21. Izadi M, Hoghoughi G, Mohebbi R, Sheremet M. Nanoparticle migration and natural convection heat transfer of Cu–water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liquids. 2018;261:357–72.

    Article  CAS  Google Scholar 

  22. Chamkha A, Ismael M, Kasaeipoor A, Armaghani T. Entropy generation and natural convection of CuO–water nanofluid in C-shaped cavity under magnetic field. Entropy. 2016;18(2):50.

    Article  Google Scholar 

  23. Hoghoughi G, Izadi M, Oztop HF, Abu-Hamdeh N. Effect of geometrical parameters on natural convection in a porous undulant-wall enclosure saturated by a nanofluid using Buongiorno’s model. J Mol Liq. 2018;255:148–59.

    Article  CAS  Google Scholar 

  24. Izadi M, Behzadmehr A, Jalali-Vahida D. Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int J Therm Sci. 2009;48(11):2119–29.

    Article  CAS  Google Scholar 

  25. Mehryan SA, Izadi M, Sheremet MA. Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model. J Mol Liq. 2018;250:353–68.

    Article  CAS  Google Scholar 

  26. Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, de Rossi D. Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol. 2015;26(3):935–46.

    Article  CAS  Google Scholar 

  27. Zargartalebi H, Ghalambaz M, Noghrehabadi A, Chamkha A. Stagnation-point heat transfer of nanofluids toward stretching sheets with variable thermo-physical properties. Adv Powder Technol. 2015;26(3):819–29.

    Article  CAS  Google Scholar 

  28. Armaghani T, Kasaeipoor A, Alavi N, Rashidi MM. Numerical investigation of water–alumina nanofluid natural convection heat transfer and entropy generation in a baffled L-shaped cavity. J Mol Liq. 2016;223:243–51.

    Article  CAS  Google Scholar 

  29. Mehryan SA, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28(9):2295–305.

    Article  CAS  Google Scholar 

  30. Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28(2):385–97.

    Article  CAS  Google Scholar 

  31. Jehad DG, Hashim GA. Numerical prediction of forced convective heat transfer and friction factor of turbulent nanofluid flow through straight channels. J Adv Res Fluid Mech Therm Sci. 2015;8(1):1–10.

    Google Scholar 

  32. Noh NM, Fazeli A, Sidik NC. Numerical simulation of nanofluids for cooling efficiency in microchannel heat sink. J Adv Res Fluid Mech Therm Sci. 2014;4(1):13–23.

    Google Scholar 

  33. Maghrebi MJ, Nazari M, Armaghani T. Forced convection heat transfer of nanofluids in a porous channel. Transp Porous Media. 2012;93(3):401–13.

    Article  CAS  Google Scholar 

  34. Chamkha AJ, Rashad AM, Mansour MA, Armaghani T, Ghalambaz M. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu–water nanofluid in a lid-driven square porous enclosure with partial slip. Phys Fluids. 2017;29(5):52001.

    Article  Google Scholar 

  35. Noghrehabadi A, Pourrajab R, Ghalambaz M. Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Therm Sci. 2012;54:253–61.

    Article  CAS  Google Scholar 

  36. Kefayati GR, Hosseinizadeh SF, Gorji M, Sajjadi H. Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int Commun Heat Mass Transfer. 2011;38(6):798–805.

    Article  CAS  Google Scholar 

  37. Sajjadi H, Gorji M, Kefayati GH, Ganji DD. Lattice Boltzmann simulation of turbulent natural convection in tall enclosures using Cu/water nanofluid. Numer Heat Transf Part A Appl. 2012;62(6):512–30.

    Article  CAS  Google Scholar 

  38. Kefayati GH, Hosseinizadeh SF, Gorji M, Sajjadi H. Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid. Int J Therm Sci. 2012;52:91–101.

    Article  CAS  Google Scholar 

  39. Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30(1):329–64.

    Article  Google Scholar 

  40. Mohamad AA. Applied lattice Boltzmann method for transport phenomena, momentum, heat and mass transfer. Can J Chem Eng. 2007;85(6):946.

    Google Scholar 

  41. Sidik NAC, Razali SA. Lattice Boltzmann method for convective heat transfer of nanofluids—A review. Renew Sustain Energy Rev. 2014;38:864–75.

    Article  Google Scholar 

  42. Chung YM, Tucker PG. Numerical studies of heat transfer enhancements in laminar separated flows. Int J Heat Fluid Flow. 2004;25(1):22–31.

    Article  Google Scholar 

  43. Lu B, Jiang P. Experimental and numerical investigation of convection heat transfer in a rectangular channel with angled ribs. Exp Thermal Fluid Sci. 2006;30(6):513–21.

    Article  Google Scholar 

  44. Mashaei PR, Hosseinalipour SM. A numerical study of nanofluid forced convection in a porous channel with discrete heat sources. J Porous Media. 2014;17(6):549–61.

    Article  CAS  Google Scholar 

  45. Pirouz MM, Farhadi M, Sedighi K, Nemati H, Fattahi E. Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles. Scientia Iranica. 2011;18(2):213–21.

    Article  Google Scholar 

  46. Biswas S, Sharma P, Mondal B, Biswas G. Analysis of mixed convective heat transfer in a ribbed channel using the lattice Boltzmann method. Numer Heat Transf Part A Appl. 2015;68(1):75–98.

    Article  CAS  Google Scholar 

  47. Li B, Lin Y, Zhu L, Zhang W. Effects of non-Newtonian behaviour on the thermal performance of nanofluids in a horizontal channel with discrete regions of heating and cooling. Appl Therm Eng. 2016;94:404–12.

    Article  CAS  Google Scholar 

  48. Haddad Z, Oztop HF, Abu-Nada E, Mataoui A. A review on natural convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2012;16(7):5363–78.

    Article  CAS  Google Scholar 

  49. Godson L, Raja B, Lal DM, Wongwises S. Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev. 2010;14(2):629–41.

    Article  CAS  Google Scholar 

  50. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev. 2007;11(3):512–23.

    Article  CAS  Google Scholar 

  51. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  52. Patel HE, Anoop KB, Sundararajan T, Das SK, editors. A micro-convection model for thermal conductivity of nanofluids. Danbury: Begel House Inc; 2006.

    Google Scholar 

  53. Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954;94(3):511.

    Article  CAS  Google Scholar 

  54. Peng Y, Shu C, Chew YT. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys Rev E. 2003;68(2):26701.

    Article  CAS  Google Scholar 

  55. Azwadi CS, Razzaghian M, Pourtousi M, Safdari A. Numerical prediction of free convection in an open ended enclosure using lattice Boltzmann numerical method. Int J Mech Mater Eng. 2013;8:58–62.

    Google Scholar 

  56. Mohamad AA. Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Berlin: Springer; 2011.

    Book  Google Scholar 

  57. Yan YY, Zu YQ. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach. Int J Heat Mass Transf. 2008;51(9–10):2519–36.

    Article  CAS  Google Scholar 

  58. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Effect of hot obstacle position on natural convection heat transfer of MWCNTS–water nanofluid in u-shaped enclosure using lattice boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018.

  59. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. International J Mod Phys C. 2018;29(04):1850030.

  60. Mei R, Luo L, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method. J Comput Phys. 1999;155(2):307–30.

    Article  CAS  Google Scholar 

  61. Turki S, Abbassi H, Nasrallah SB. Two-dimensional laminar fluid flow and heat transfer in a channel with a built-in heated square cylinder. Int J Therm Sci. 2003;42(12):1105–13.

    Article  Google Scholar 

  62. Sidik NAC, Khakbaz M, Jahanshaloo L, Samion S, Darus AN. Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method. Nanoscale Res Lett. 2013;8(1):178.

    Article  Google Scholar 

  63. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasul Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, R., Izadi, M., Amiri Delouei, A. et al. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim 135, 3029–3042 (2019). https://doi.org/10.1007/s10973-018-7483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7483-5

Keywords

Navigation