Skip to main content
Log in

Construction of trajectories of irreversible processes on the basis of equilibrium thermodynamic propositions

Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper is concerned with the problem of macroscopic (unrelated with probability theory) construction of trajectories of irreversible physicochemical processes. The research involves simple and universal principles of conservation, equilibrium and extremality of classical mechanics and thermodynamics. The capabilities of their implementation increase greatly with development of computer engineering and information technologies. Two methods for construction are suggested: (1) a step-by-step method and (2) a method based on statement of the problem solved in one-dimensional graphical circuit variable space. For the implementation of the first method, the steps are chosen so small that the assumptions about the stationarity of motion and the observance of conservative system behavior regularities are made permissible. For intrastep simulation, we use the model of extreme intermediate states developed at the Melentiev Energy Systems Institute. To increase the optimal results of calculations when transitioning from one step to another, the dynamic programming method is applied. The properties of reversible processes in the case of constructing trajectories by the second method are always observed by the potentiality of one-dimensional motion. The need for the use and applicability of the proposed methodical approach is explained by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Polak LS. Variational principles of mechanics: their development and application to physics. Moscow: LIBROKOM; 2010 (in Russian).

    Google Scholar 

  2. Kaganovich BM, Filippov SP, Antsiferov EG. Efficiency of energy technologies: thermodynamics, economics, forecasts. Novosibirsk: Nauka; 1989 (in Russian).

    Google Scholar 

  3. Gorban AN, Kaganovich BM, Filippov SP, Keiko AV, Shamansky VA, Shirkalin IA. Thermodynamic equilibria and extrema analysis of attainability regions and partial equilibria. Berlin: Springer; 2006.

    Google Scholar 

  4. Kozlov A, Svishchev D, Donskoy I, Keiko AV. Thermal analysis in numerical thermodynamic modeling of solid fuel conversion. J Therm Anal Calorim. 2012;109:1311–7.

    Article  CAS  Google Scholar 

  5. Muvhiiwa RF, Lu X, Hildebrandt D, Glasser D, Matambo T. Applying thermodynamics to digestion/gasification processes: the attainable region approach. J Therm Anal Calorim. 2018;131:25–36.

    Article  CAS  Google Scholar 

  6. Kaganovich BM, Keiko AV, Shamansky VA. Equilibrium thermodynamic modeling of dissipative macroscopic systems. In: West DH, Yablonsky G, editors. Advances in chemical engineering. Vol. 39. Thermodynamics and kinetics of complex systems. Elsevier; 2010. pp. 1–74.

  7. Kaganovich BM, Keiko AV, Shamansky VA, Zarodnyuk MS. On the interrelations between kinetics and thermodynamics as the theories of trajectories and states. In: Patel V, editor. Chemical kinetics. Rijeka: Intech; 2012. pp. 31–60.

    Google Scholar 

  8. Kaganovich BM. Equilibrium thermodynamics. Problems and perspectives. Saarbrücken: LAP Lambert Academic Publishing; 2015 (in Russian).

    Google Scholar 

  9. Lagrange J. Analytical Mechanics. Dordrecht: Kluwer; 1997.

    Book  Google Scholar 

  10. Bellman RE. Dynamic programming. Princeton: Princeton Univ. Press; 1957.

    Google Scholar 

  11. Caratheodory C. Untersuchungen uber die grundlagen der thermodynamik. Math Ann. 1909;61:355–90.

    Article  Google Scholar 

  12. Born M. Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik. Physic Zeitschr. 1920; 22: 218–24, 249–54, 282–6.

  13. Kirchhoff GR. Ueber den Durchgang eines elektrischen Stromes durch Ebene, insbesondere durch eine kreisformige. Ann Phys. 1845;64:497–514.

    Article  Google Scholar 

  14. Kirchhoff GR. Ueber die Anwendbarkeit der Formeln fur die Intensitaten der galvanischen Strome in einem Systeme linearer Leiter auf Systeme, die zum Theil aus nicht linearen Leitern bestehen. Ges. Abhandl. Leipzig: Johann Ambrosius Barth; 1882. pp. 33–49.

  15. Maxwell JCA. Treatise on electricity and magnetism. London: The Clarendon Press; 1891.

    Google Scholar 

  16. Viktor Yakovlevich Khasilev: Memoirs of Life and Work. Scientific Legacy. Novosibirsk: Academic Publishing House “Geo”; 2012. (in Russian).

  17. Merenkov AP, Khasilev VY. Theory of hydraulic circuits. Moscow: Nauka; 1985 (in Russian).

    Google Scholar 

  18. Einstein A. Contributions to quantum theory. In: The collected papers of Albert Einstein, Vol. 6. The Berlin years: writings, 1914–1917. Princeton: Princeton University Press; 1997. pp. 20–27.

  19. Kantorovich LV. On the translocation of masses. J Math Sci. 2006;4:1381–2.

    Article  Google Scholar 

  20. Gorban AN. Equilibrium encircling: equations of chemical kinetics and their thermodynamic analysis. Novosibirsk: Nauka; 1984 (in Russian).

    Google Scholar 

  21. Gorban AN. Thermodynamic tree: the space of admissible paths. SIAM J Appl Dyn Syst. 2013;12(1):246–78.

    Article  Google Scholar 

  22. Kaganovich BM, Merenkov AP, Balyshev OA. Elements of the Theory of Heterogeneous Hydraulic Circuits. Novosibirsk: Nauka; 1997. p. 120 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim S. Zarodnyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaganovich, B.M., Zarodnyuk, M.S. & Yakshin, S.V. Construction of trajectories of irreversible processes on the basis of equilibrium thermodynamic propositions. J Therm Anal Calorim 133, 1225–1232 (2018). https://doi.org/10.1007/s10973-018-7368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7368-7

Keywords

Navigation