Skip to main content
Log in

Thermal and combustion behavior of novel oxygen-rich energetic pyrazoles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Physicochemical properties, such as thermal decomposition, burning behavior, and flame structure of low-melting oxygen-rich energetic N-trinitromethyl-3,4-dinitropyrazole (1), N-trinitromethyl-3,5-dinitropyrazole (2), N-flurodinitromethyl-3,5-dinitropyrazole (3), and N-[(difluoroamino)dinitromethyl]-3,5-dinitropyrazole (4), have been studied. It has been found that the stability of N-trinitromethyl azoles is relatively higher than stability of similar C-trinitromethyl heterocycles. Replacing one nitro group in the trinitromethyl moiety with fluorine or difluoroamine group changes the C–NO2 bond length and the thermal stability. However, there is no linear correlation between the rate constants and the C–NO2 bond length, which indicates the presence of other factors affecting the stability of trinitro- and substituted dinitromethyl derivatives. The burning rates of the nitropyrazoles varied from 26.8 mm s−1 (for 1) to 77.5 mm s−1 (for 4) at 10 MPa. An analysis of thermocouple data shows that the burning rate of nitropyrazoles 1, 2, and 4 depends on the rate of heat release in the condensed phase. The increased stability of the fluorodinitromethyl compound 3 causes a decrease in the depth of its decomposition in the melt and shifts the leading reaction of its combustion into the gas phase.

Graphical Abstract

Two-stage decomposition is stipulated by different thermal stabilities of the substituent and the dinitropyrazole fragment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tang Y, He C, Mitchell LA, Parrish DA, Shreeve JM. C–N bonded energetic biheterocyclic compounds with good detonation performance and high thermal stability. J Mater Chem A. 2016;4(10):3879–85.

    Article  CAS  Google Scholar 

  2. Larina L, Lopyrev V. Nitroazoles: synthesis, structure and applications. New York: Springer LLC; 2009.

    Book  Google Scholar 

  3. Makhova NN, Kulikov AS. Advances in the chemistry of monocyclic amino- and nitrofuroxans. Russ Chem Rev. 2013;82:1007–33.

    Article  CAS  Google Scholar 

  4. Yin P, Shreeve JM. Nitrogen-rich azoles as high density energy materials: reviewing the energetic footprints of heterocycles. Adv Heterocycl Chem. 2017;121:89–131.

    Article  Google Scholar 

  5. Kettner MA, Klapötke TM. Synthesis of new oxidizers for potential use in chemical rocket propulsion. In: De Luca L, Shimada T, Sinditskii VP, Calabro M, editors. Chemical rocket propulsion. Berlin: Springer; 2017. p. 89–125.

    Google Scholar 

  6. Sheremetev AB, Yudin IL, Palysaeva NV, Suponitsky KY. The synthesis of 4-(3-nitrofurazan-4-yl)-3,5-dinitropyrazole and its salts. J Heterocycl Chem. 2012;49(2):394–401.

    Article  CAS  Google Scholar 

  7. Dalinger IL, Vatsadze IA, Shkineva TK, Popova GP, Shevelev SA, Nelyubina YV. Synthesis and comparison of the reactivity of 3,4,5-1H-trinitropyrazole and it’s N-methyl derivative. J Heterocycl Chem. 2013;59:911–24.

    Article  Google Scholar 

  8. Pagoria P. A comparison of the structure, synthesis, and properties of insensitive energetic compounds. Prop Explos Pyrotech. 2016;41(3):452–69.

    Article  CAS  Google Scholar 

  9. Shevelev SA, Dalinger IL. Advances in the nitropyrazole chemistry. Zh Org Khim. 1998;34:1127–36 [Russ J Org Chem. 1998;34(8):1071–180 (Engl. Transl.)].

  10. Zaitsev AA, Dalinger IL, Shevelev SA. Dinitropyrazoles. Usp Khim. 2009;78: 643 [Russ Chem Rev. 2009;78:589–627 (Engl. Transl.)].

  11. Dalinger IL, Vatsadze IA, Shkineva TK, Kormanov AV, Struchkova MI, Suponitsky KY, Bragin AA, Monogarov KA, Sinditskii VP, Sheremetev AB. Novel highly energetic pyrazoles: N-trinitromethyl-substituted nitropyrazoles. Chem Asian J. 2015;10:1987–96.

    Article  CAS  Google Scholar 

  12. Dalinger IL, Shakhnes AK, Monogarov KA, Suponitsky KY, Sheremetev AB. Novel high energetic pyrazoles: N-fluorodinitromethyl and N-(difluoroamino)dinitromethyl derivatives. Mendeleev Commun. 2015;25(6):429–31.

    Article  CAS  Google Scholar 

  13. Lempert DB, Sheremetev AB, Shu YJ, Dalinger IL, Kazakov AI. Energy opportunities of dinitroderivatives of 1-(trinitromethyl)-1H-pyrazoles as possible oxidizers for solid composite propellants. In: Proc. “New Trends in Research of Energetic Materials”, 2016; Part II. p. 726–34.

  14. Lempert DB, Dalinger IL, Shu YJ, Kazakov AI, Sheremetev AB. Estimation of the ballistic effectiveness of 3,4-and 3,5-dinitro-1-(trinitromethyl)-1H-pyrazoles as oxidizers for composite solid propellants. Chin J Explos Propell. 2016;39(2):16–21.

    Google Scholar 

  15. Ravi P, Badgujar DM, Gore GM, Tewari SP, Sikder AK. Review on melt cast explosives. Prop Explos Pyrotech. 2011;36(5):393–403.

    Article  CAS  Google Scholar 

  16. Kumari D, Balakshe R, Banerjee S, Singh H. Energetic plasticizers for gun & rocket propellants. Rev J Chem. 2012;2(3):240–62.

    Article  Google Scholar 

  17. Sinditskii VP, Burzhava AV, Sheremetev AB, Aleksandrova NS. Thermal and combustion properties of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF). Prop Explos Pyrotech. 2012;37(5):575–80.

    Article  CAS  Google Scholar 

  18. Sinditskii VP, Burzhava AV, Chernyi AN, Shmelev DS, Apalkova VN, Palysaeva NV, Sheremetev AB. A comparative study of two difurazanyl ethers. J Therm Anal Calor. 2016;123(2):1431–8.

    Article  CAS  Google Scholar 

  19. Son SF, Berghout HL, Bolme CA, Chavez DE, Naud DL, Hiskey MA. Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc Comb Inst. 2000;28:919–24.

    Article  CAS  Google Scholar 

  20. Sinditskii VP, Egorshev VY, Rudakov GF, Filatov SA, Burzhava AV. High-nitrogen energetic materials of 1,2,4,5-tetrazine family: thermal and combustion behaviors. In: De Luca L, Shimada T, Sinditskii VP, Calabro M, editors. Chemical rocket propulsion. Berlin: Springer; 2017. p. 89–125.

    Chapter  Google Scholar 

  21. Sinditskii VP, Filatov SA, Kolesov VI, Kapranov KO, Asachenko AF, Nechaev MS, Lunin VV, Shishov NI. Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.

    Article  CAS  Google Scholar 

  22. Ali AN, Son SF, Hiskey MA, Naud DL. Novel high nitrogen propellant use in solid fuel micropropulsion. J Prop Power. 2004;20(1):120–6.

    Article  CAS  Google Scholar 

  23. Serushkin VV, Sinditskii VP, Egorshev VY, Filatov SA. Combustion mechanism of triaminoguanidine nitrate. Prop Explos Pyrotech. 2013;38(3):345–50.

    Article  CAS  Google Scholar 

  24. Chavez DE, Tappan BC, Hiskey MA, Son SF, Harry H, Montoya D, Hagelberg S. New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies. Prop Explos Pyrotech. 2005;30(6):412–7.

    Article  CAS  Google Scholar 

  25. Sinditskii VP, Egorshev VY, Rudakov GF, Burzhava AV, Filatov SA, Sang LD. Thermal behavior and combustion mechanism of high-nitrogen energetic materials DHT and BTATz. Thermochim Acta. 2012;535:48–57.

    Article  CAS  Google Scholar 

  26. Fogelzang AE, Adzhemian VJ, Svetlov BS. Investigation of combustion of lead salts of nitrocarbonic acids and nitroparaffins. Dokl Akad Nauk SSSR. 1977;236(3):688–91.

    CAS  Google Scholar 

  27. Atwood AI, Boggs TL, Curran PO, Parr TP, Hanson-Parr D, Price CF, Wiknich J. Burning rate of solid propellant ingredients. Part 1: pressure and initial temperature effects. J Prop Power. 1999;15(6):740–7.

    Article  CAS  Google Scholar 

  28. Sinditskii VP, Serushkin VV, Filatov SA, Egorshev VY. Flame structure of hydrazinium nitroformate. Int J Energ Mater Chem Prop. 2002;5(1–6):576–86.

    Google Scholar 

  29. Sheremetev AB, Korolev VL, Potemkin AA, Aleksandrova NS, Palysaeva NV, Hoang TH, Sinditskii VP, Suponitsky KY. Oxygen-rich 1,2,4-triazolo[3,4-d]-1,2,4-triazolo[3,4-f]furazano[3,4-b] pyrazines as energetic materials. Asian J Org Chem. 2016;5(11):1388–97.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  31. Miroshnichenko EA, Korchatova LI, Shelaputina VP, Zyuz’kevich SA, Lebedev YA. Thermochemistry of glyceryl trinitrate. Russ Chem Bull. 1988;37(9):1778–81.

    Article  Google Scholar 

  32. Andreev KK. Thermal decomposition and combustion of explosives. Moscow, Nauka; 1969 (No. FTD-HT-23-1329-68, Foreign Technology Div Wright-Patterson AFB OH).

  33. Belov GB. Thermodynamic analysis of combustion products at high temperature and pressure. Prop Explos Pyrotech. 1998;23:86–9.

    Article  CAS  Google Scholar 

  34. Fogelzang AE, Egorshev VY, Sinditskii VP, Dutov MD. Combustion of nitroderivatives of azidobenzenes and benzofuroxans. Comb Flame. 1991;87:123–35.

    Article  CAS  Google Scholar 

  35. Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV. Mechanism of HMX combustion in a wide range of pressures. Comb Explos Shock Waves. 2009;45(4):461–77.

    Article  Google Scholar 

  36. Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA. Combustion of energetic materials governed by reactions in the condensed phase. Int J Ener Mater Chem Prop. 2010;9(2):147–92. https://doi.org/10.1615/intjenergeticmaterialschemprop.v9.i2.30.

    Google Scholar 

  37. Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV, Mileykhin YM, Gusev SA, Matveev AA. Combustion behavior and mechanism of high-energy caged nitramine hexanitrohexaazaisowurtzitane. Zh Khim Fiz. 2003;22(7):69–74.

    CAS  Google Scholar 

  38. Andreev KK. Experimental investigation on combustion of explosives. In: Collection of articles on theory of explosives. Moscow: Oborongiz; 1940. p. 39–65.

  39. Pleshakov DV, Lotmentsev YM. Prediction of thermodynamic conditions for nitroester vapor condensation on the surfaces of process apparatus during the production of energetic materials. In: Proceedings of VII Seminar «New trends in research of energetic materials», Pardubice, Czech Republic; 2004. p. 591–99.

  40. Sinditskii VP, Smirnov SP, Egorshev VY, Chernyi AN, Shkineva TK, Palysaeva NV, Suponitsky KY, Dalinger IL. Thermal decomposition peculiarities and combustion behavior of nitropyrazoles. Thermochim Acta. 2017;651:83–99. https://doi.org/10.1016/j.tca.2017.02.019.

    Article  CAS  Google Scholar 

  41. Dubikhin VV, Nazin GM, Prokudin VG, Aliev ZG, Vatsadze IA, Shevelev SA, Dalinger IL. Kinetics and mechanism of thermal decomposition of nitropyrazoles. Russ Chem Bull. 2015;64(1):127–31.

    Article  CAS  Google Scholar 

  42. Bragin A, Pivkina A, Muravyev N, Monogarov K, Gryzlova O, Shkineva T, Dalinger I. Thermal decomposition of nitropyrazoles. Phys Procedia. 2015;72:358–61.

    Article  CAS  Google Scholar 

  43. Stepanov RS, Kruglyakova LA, Astakhov AM. Structural and kinetic regularities of thermal decomposition of gem-trinitromethylazoles in the liquid phase. Russ J Gen Chem. 2007;77(11):1933–8.

    Article  CAS  Google Scholar 

  44. Afanasiev AG, Lur’e BA, Svetlov BS. Effect of the chemical structure of some nitro esters on the nature of their thermal decomposition. In: Theory of explosives. Moscow: Vysshaya Shkola; 1967. p. 63–75.

  45. Sinditskii VP, Egorshev VY, Berezin MV. Combustion of energetic cyclic nitramines. Zh Khim Fiz. 2003;22(4):53–60.

    Google Scholar 

  46. Nazin GM, Prokudin VG, Dubikhin VV, Aliev ZG, Zbarskii VL, Yudin NV, Shastin AV. Relation between the N-NO2 bond length and stability of the secondary nitramines. Zh Obshchei Khim. 2013;83(6):940–45 [Russ J Gen Chem. 2013; 83(6):1071–76].

  47. Nazin GM, Manelis GB, Rubtsov YI, Strunin VA. Thermal decomposition and combustion of explosives and propellants. Boca Raton: CRC Press; 2003.

    Google Scholar 

  48. Janssen JWAM, Koeners HJ, Kruse CG, Habrakern CL. Pyrazoles. XII. Preparation of 3 (5)-nitropyrazoles by thermal rearrangement of N-nitropyrazoles. J Org Chem. 1973;38(10):1777–82.

    Article  CAS  Google Scholar 

  49. Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA. Combustion of energetic materials controlled by condensed-phase reactions. Fizika Gorenia i Vzryva. 2012;48(1):89–109 [Comb Expl Shock Waves. 2012;48(1):81–99 (Engl. Transl.)].

  50. Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA, Smirnov SP. Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta. 2009;496(1–2):1–12. https://doi.org/10.1016/j.tca.2009.07.004.

    Article  CAS  Google Scholar 

  51. Zeldovich YB. Theory of combustion of propellants and explosives. Zh Eksper Teoret Fiziki. 1942;12(11–12):498–524.

    CAS  Google Scholar 

  52. Sinditskii VP. On the nature of the burning rate-controlling reaction of energetic materials for the gas-phase model. Fizika Gorenia i Vzryva. 2007;43(3):59–71 [Comb Explos Shock Waves. 2007;43(3):297–308 (Engl. Transl.)].

Download references

Acknowledgements

The authors are grateful to Dr. N. N. Ilicheva and Dr. N. N. Kondakova (MUCT) for taking DSC and TGA measurements and Dr. N. V. Yudin (MUCT) for taking LC–MS measurements. The work was supported by the Russian Science Foundation (Project No. 14-13-01153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery P. Sinditskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serushkin, V.V., Sinditskii, V.P., Hoang, T.H. et al. Thermal and combustion behavior of novel oxygen-rich energetic pyrazoles. J Therm Anal Calorim 132, 127–142 (2018). https://doi.org/10.1007/s10973-017-6911-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6911-2

Keywords

Navigation