Skip to main content
Log in

Flame retardancy and thermal degradation mechanism of calcium alginate/CaCO3 composites prepared via in situ method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The calcium alginate/CaCO3 composites were prepared via in situ method, and their flame retardancy and thermal degradation mechanism were investigated. The composites as-prepared were analyzed by the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, thermogravimetric analysis (TG), vertical burning (UL-94), cone calorimeter (CONE) and X-ray diffraction (XRD). The SEM demonstrated that the inorganic calcium salt in the composites had great influence on the morphology of materials. The TG results indicated the thermal stability of the composites was remarkably improved by 70 °C, compared with that of the calcium alginate. The combustion behaviors of the materials were assessed by CONE. In comparison with those of the calcium alginate, the peak heat release rate and total heat release of the composites decreased by 40.42 and 62.59%, respectively. The different degradation mechanisms of the calcium alginate and the composites were first proposed in detail based on the TG, XRD and SEM results. The composites exhibited excellent thermal stability and flame retardancy, which is promising to be developed for the application as flame-retardant materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang J, Ji Q, Wang F, Tan L, Xia Y. Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polym Degrad Stab. 2012;97:1034–40.

    Article  CAS  Google Scholar 

  2. Ma X, Li R, Zhao X, Ji Q, Xing Y, Sunarso J, et al. Biopolymer composite fibres composed of calcium alginate reinforced with nanocrystalline cellulose. Compos Part A: Appl Sci Manufac. 2017;96:155–63.

    Article  CAS  Google Scholar 

  3. Tian G, Ji Q, Xu D, Tan L, Quan F, Xia Y. The effect of zinc ion content on flame retardance and thermal degradation of alginate fibers. Fiber Polym. 2013;14:767–71.

    Article  CAS  Google Scholar 

  4. Liu Y, Wang J-S, Zhu P, Zhao J-C, Zhang C-J, Guo Y, et al. Thermal degradation properties of biobased iron alginate film. J Anal Appl Pyrolysis. 2016;119:87–96.

    Article  CAS  Google Scholar 

  5. Hou J, Li C, Guan Y, Zhang Y, Zhu XX. Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polym Chem. 2015;6:2204–13.

    Article  CAS  Google Scholar 

  6. Chen H-B, Hollinger E, Wang Y-Z, Schiraldi DA. Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. Polymer. 2014;55:380–4.

    Article  CAS  Google Scholar 

  7. Chen HB, Wang YZ, Schiraldi DA. Preparation and flammability of poly(vinyl alcohol) composite aerogels. ACS Appl Mater Interface. 2014;6:6790–6.

    Article  CAS  Google Scholar 

  8. Pojanavaraphan T, Liu L, Ceylan D, Okay O, Magaraphan R, Schiraldi DA. Solution cross-linked natural rubber (NR)/clay aerogel composites. Macromolecules. 2011;44:923–31.

    Article  CAS  Google Scholar 

  9. Caires FJ, Lima LS, Carvalho CT, Giagio RJ, Ionashiro M. Thermal behaviour of malonic acid, sodium malonate and its compounds with some bivalent transition metal ions. Thermochim Acta. 2010;497:35–40.

    Article  CAS  Google Scholar 

  10. Shi R, Tan L, Zong L, Ji Q, Li X, Zhang K, et al. Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydr Polym. 2017;157:1594–603.

    Article  CAS  Google Scholar 

  11. Zhang J, Ji Q, Shen X, Xia Y, Tan L, Kong Q. Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stab. 2011;96:936–42.

    Article  CAS  Google Scholar 

  12. Agulhon P, Robitzer M, David L, Quignard F. Structural regime identification in ionotropic alginate gels: influence of the cation nature and alginate structure. Biomacromol. 2012;13:215–20.

    Article  CAS  Google Scholar 

  13. Chen H-B, Wang Y-Z, Sánchez-Soto M, Schiraldi DA. Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. Polymer. 2012;53:5825–31.

    Article  CAS  Google Scholar 

  14. Lorenzetti A, Modesti M, Besco S, Hrelja D, Donadi S. Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym Degrad Stab. 2011;96:1455–61.

    Article  CAS  Google Scholar 

  15. Zhang C-J, Liu Y, Cui L, Yan C, Zhu P. Bio-based calcium alginate nonwoven fabrics: flame retardant and thermal degradation properties. J Anal Appl Pyrol. 2016;122:13–23.

    Article  CAS  Google Scholar 

  16. Yan Y-W, Huang J-Q, Guan Y-H, Shang K, Jian R-K, Wang Y-Z. Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite. Polym Degrad Stab. 2014;99:35–42.

    Article  CAS  Google Scholar 

  17. Liu Y, Zhao X-R, Peng Y-L, Wang D, Yang L, Peng H, et al. Effect of reactive time on flame retardancy and thermal degradation behavior of bio-based zinc alginate film. Polym Degrad and Stab. 2016;127:20–31.

    Article  CAS  Google Scholar 

  18. Shang K, Liao W, Wang J, Wang YT, Wang YZ, Schiraldi DA. Nonflammable alginate nanocomposite aerogels prepared by a simple freeze-drying and post-cross-linking method. ACS Appl Mater Inter. 2016;8:643–50.

    Article  CAS  Google Scholar 

  19. Pathak TS, Yun J-H, Lee S-J, Baek D-J, Paeng K-J. Effect of cross-linker and cross-linker concentration on porosity, surface morphology and thermal behavior of metal alginates prepared from algae (Undaria pinnatifida). Carbohydr Polym. 2009;78:717–24.

    Article  CAS  Google Scholar 

  20. Xing X, Wang J, Hu W. Inhibition behavior of Cu-benzoltriazole-calcium alginate gel beads by piercing and solidification. Mater Des. 2017;126:322–30.

    Article  CAS  Google Scholar 

  21. Kim GH, Sohn I. Role of B2O3 on the viscosity and structure in the CaO–Al2O3–Na2O-based system. Metall Mater Trans B. 2013;45:86–95.

    Article  Google Scholar 

  22. Lucacel Ciceo R, Trandafir D-L, Radu T, Ponta O, Simon V. Synthesis, characterisation and in vitro evaluation of sol–gel derived SiO2–P2O5–CaO–B2O3 bioactive system. Ceram Int. 2014;40:9517–24.

    Article  CAS  Google Scholar 

  23. Krishnamacharyulu N, Mohini GJ, Baskaran GS, Kumar VR, Veeraiah N. Effect of ZrO2 on the bioactive properties of B2O3–SiO2–P2O5–Na2O–CaO glass system. J Non-Cryst Solids. 2016;452:23–9.

    Article  CAS  Google Scholar 

  24. ElBatal FH, Ouis MA, ElBatal HA. Comparative studies on the bioactivity of some borate glasses and glass–ceramics from the two systems: Na2O–CaO–B2O3 and NaF–CaF2–B2O3. Ceram Int. 2016;42:8247–56.

    Article  CAS  Google Scholar 

  25. Liu Y, Li Z, Wang J, Zhu P, Zhao J, Zhang C, et al. Thermal degradation and pyrolysis behavior of aluminum alginate investigated by TG-FTIR-MS and Py-GC-MS. Polym Degrad Stab. 2015;118:59–68.

    Article  CAS  Google Scholar 

  26. Wang Y, Yang X, Peng H, Wang F, Liu X, Yang Y, et al. Layer-by-layer assembly of multifunctional flame retardant based on brucite, 3-aminopropyltriethoxysilane, and alginate and its applications in ethylene-vinyl acetate resin. ACS Appl Mater Interface. 2016;8:9925–35.

    Article  CAS  Google Scholar 

  27. Anastasakis K, Ross AB, Jones JM. Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel. 2011;90:598–607.

    Article  CAS  Google Scholar 

  28. Liu H, Song PA, Fang Z, Shen L, Peng M. Thermal degradation and flammability properties of HDPE/EVA/C60 nanocomposites. Thermochim Acta. 2010;506:98–101.

    Article  CAS  Google Scholar 

  29. Chao C, Gao M. Flame retardancy and thermal properties of octavinylsilsesquioxane/polycarbonate composites. J Therm Anal Calorim. 2016;128:1125–32.

    Article  Google Scholar 

  30. Yu Z, Liu J, Zhang Y, Luo J, Lu C, Pan B. Thermo-oxidative degradation behavior and fire performance of high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite with an alternating layered structure. Polym Degrad Stab. 2015;115:54–62.

    Article  CAS  Google Scholar 

  31. Hu X, Shao C, Wang J, Wang H. Characterization and high-temperature degradation mechanism of continuous silicon nitride fibers. J Mater Sci. 2017;52:7555–66.

    Article  CAS  Google Scholar 

  32. Zhu H, Wu Z, Chen Y, Zhang P, Duan S, Liu X, et al. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin J Catal. 2006;27:391–6.

    Article  CAS  Google Scholar 

  33. Xu W, Li J, Liu F, Jiang Y, Li Z, Li L. Study on the thermal decomposition kinetics and flammability performance of a flame-retardant leather. J Therm Anal Calorim. 2016;128:1107–16.

    Article  Google Scholar 

  34. Mateker WR, McGehee MD. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics. Adv Mater. 2017;29:1603940.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51773102, 51503110); China Postdoctoral Science Foundation funded project (Grant Number 2016M602103); and Qingdao Postdoctoral Application Research Project (Grant Number 2015134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Z., Zhao, X. et al. Flame retardancy and thermal degradation mechanism of calcium alginate/CaCO3 composites prepared via in situ method. J Therm Anal Calorim 131, 2167–2177 (2018). https://doi.org/10.1007/s10973-017-6767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6767-5

Keywords

Navigation