Skip to main content
Log in

Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX-50-based PBX

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

TKX-50-based PBX (PBX-T) is prepared by solution–water suspension method using dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) as the explosive. The thermal behavior of PBX-T is investigated under a nonisothermal condition by using TG-DTG and DSC method. The kinetic parameters (E a = 167.98 kJ mol−1 and A = 1016.05 s−1) for the main thermal decomposition reaction of PBX-T are calculated from the analysis of DSC curves by differential method and integral method, and the nonisothermal kinetic equation of the exothermic process is \({\text{d}}\alpha /{\text{d}}T = \left( {10^{16.05} /2\beta } \right)5\left( {1 - \alpha } \right)\left[ { - \ln \left( {1 - \alpha } \right)} \right]^{3/5} \exp ( - 2.0204 \times 10^{4} /T)\), suggesting that the main exothermic decomposition reaction mechanism of PBX-T is classified as Avrami–Erofeev equation. The specific heat capacity (C p) of PBX-T is measured using continuous C p mode of C80 micro-calorimeter. Depending on the thermal decomposition parameters and Chinese Military Standards GJB 772A-97 method, the adiabatic time, self-accelerating decomposition temperature, sensitivities, and 5-second flash point on of PBX-T are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Yan QL, Zeman S, Sánchez Jiménez PE, Zhao FQ, Pérez-Maqueda LA, Málek J. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. J Hazard Mater. 2014;271:185–95.

    Article  CAS  Google Scholar 

  2. Yan QL, Zeman S, Elbeih A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta. 2012;537:1–12.

    Article  CAS  Google Scholar 

  3. Jaw KS, Lee JS. Thermal behaviors of PETN base polymer bonded explosives. J Therm Anal Calor. 2008;93:953–7.

    Article  CAS  Google Scholar 

  4. Yan QL, Zeman S, Elbeih A. Thermal behavior and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;562:56–64.

    Article  CAS  Google Scholar 

  5. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.

    Article  CAS  Google Scholar 

  6. Yuan B, Yu ZJ, Bernstein ER. Initial Mechanisms for the Decomposition of Electronically Excited Energetic Salts: TKX-50 and MAD-X1. J Phys Chem A. 2015;119:2965–81.

    Article  CAS  Google Scholar 

  7. Niu H, Chen SS, Jin SH, Shu QH, Li LJ, Shang FQ. Dissolution Properties of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate and Disodium 5,5′-Bistetrazole-1,1′-diolate in Water. J Energy Mater. 2016;34:416–25.

    Article  CAS  Google Scholar 

  8. An Q, Guang W, William L, Goddard A, Cheng T, Zybin SV, Xiao H. Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate Crystals from Quantum Mechanics. J Phys Chem C. 2014;118:27175–81.

    Article  CAS  Google Scholar 

  9. Sinditskiia VP, Filatova SA, Kolesova VI, Kapranova KO, Asachenkob AF, Nechaevb MS, et al. Combustion behavior and physico-chemical properties of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.

    Article  Google Scholar 

  10. Niu H, Chen SS, Jin SH, Li LJ, Jing BC, Jiang ZM, et al. Thermolysis, nonisothermal decomposition kinetics, calculated detonation velocity and safety assessment of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate. J Therm Anal Calor. 2016;126:473–80.

    Article  CAS  Google Scholar 

  11. Singh H. Current trend of R&D in the field of high energy materials (HEMs)-an overview. Explosion. 2005;15:120–33.

    CAS  Google Scholar 

  12. Dippold AA, Klapötke TM. A study of dinitro-bis-1,2,4-triazole-1,1′-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. J Am Chem Soc. 2013;135:9931–8.

    Article  CAS  Google Scholar 

  13. Xu XJ, Zhu WH, Xiao HM. Hexanitrohexaazaadamantane: a new potential high-energy-density compound superior to hexanitrohexaazaisowurtzitane (CL-20). J Energy Mater. 2009;27:247–62.

    Article  CAS  Google Scholar 

  14. Ma S, Li YJ, Li Y, Luo YJ. Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics. J Mol Model. 2016;22:43–53.

    Article  CAS  Google Scholar 

  15. Yu YH, Chen SS, Li X, Zhu JP, Liang H, Zhang XX, et al. Molecular dynamics simulations for 5,5′—bistetrazole-1,1′ -diolate (TKX-50) and its PBXs. RSC Adv. 2016;6:20034–41.

    Article  CAS  Google Scholar 

  16. Wang XJ, Su Q, Chen SS. Synthesis of cumulative nitrogen rich compound of dihydroxylammonium 5,5-bistetrazole -1,1-diolate. Initiat Pyrotech. 2014;3:1003–6.

    Google Scholar 

  17. Elbeih A, Pachman J, Zeman S, Trzcinski WA, Suceska M. Study of plastic explosives based on attractive cyclic nitramines, Part II: detonation characteristics of explosives with polyfluorinated binders. Propellants, Explos, Pyrotech. 2013;38:238–43.

    Article  CAS  Google Scholar 

  18. Ditmars DA, Ishihara S, Chang SS. J Res Natl Bur Stand. 1982;87:159–63.

    Article  CAS  Google Scholar 

  19. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    Article  CAS  Google Scholar 

  20. Yi JH, Zhao FQ, Xu SY, Zhang LY, Gao HX, Hu RZ. Effects of pressure and TEGDN content on decomposition reaction mechanism and kinetics of DB gun propellant containing the mixed ester of TEGDN and NG. J Hazard Mater. 2009;165:853–9.

    Article  CAS  Google Scholar 

  21. Ma HX, Song JR, Xiao HM, Hu RZ, Wang HL, Jin PG, et al. Non-isothermal kinetics of the dehydration reaction of 3-nitro-1,2,4-triazol-5-one rubidium and cesium complexes. J Hazard Mater. 2006;128:116–21.

    Article  CAS  Google Scholar 

  22. Ma H, Yan B, Li ZN, Guan YL, Song J, Xu KZ, et al. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater. 2009;169:1068–73.

    Article  CAS  Google Scholar 

  23. Hu RZ, Yang ZQ, Liang YJ. The determination of the most probable mechanism function and three kinetic parameters of exothermic decomposition reaction of energetic materials by a single non-isothermal DSC curve. Thermochim Acta. 1988;123:135–51.

    Article  Google Scholar 

  24. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  25. Xiao LB, Zhao FQ, Luo Y, Li N, Gao HX, Xue YQ, et al. Thermal behavior and safety of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Therm Anal Calor. 2016;123:653–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Li.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, H., Chen, S., Jin, S. et al. Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX-50-based PBX. J Therm Anal Calorim 131, 3193–3199 (2018). https://doi.org/10.1007/s10973-017-6750-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6750-1

Keywords

Navigation