Skip to main content
Log in

Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This experimental study addressed developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid within the temperature range of 25–55 °C for samples with volume fractions of 0.25, 0.5, 0.75, 1, 1.5, and 2%. In this experiment, the nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. Dynamics viscosity of nanofluid is measured using the DV-I PRIME Brookfield digital viscometer which has a double-wall cylindrical container. According the results, dynamic viscosity increases with increasing the volume fraction. On the other hand, dynamic viscosity of the fluid decreases with increasing temperature. Relative viscosity of the nanofluid increased approximately by 88.46, 90.44, 83.25, and 82.06% by increasing the volume fraction from 0.25 to 2% at 40, 45, 50, and 55 °C, respectively. Due to the lack of a precise and appropriate equation for the prediction of dynamics viscosity of silver/ethylene glycol nanofluid, an equation was provided based on the measurement results, which was a function of volume fraction and temperature. Investigations showed that maximum value for the margin of deviation for the proposed equation was equal to 8%, which is acceptable for an experimental equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nguyen CT, Desgranges F, Galanis N, Roya G, Maréd T, Boucher S, Angue Mints H. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable. Int J Therm Sci. 2008;47:103–11.

    Article  CAS  Google Scholar 

  2. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Exp Therm Fluid Sci. 2009;33:706–14.

    Article  CAS  Google Scholar 

  3. Chandrasekar M, Suresh S, Chandra Bose A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34:210–6.

    Article  CAS  Google Scholar 

  4. Hojjat M, Etemad SG, Bagheri R, Thibault J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf. 2011;38:144–8.

    Article  CAS  Google Scholar 

  5. Tran X, Massoudi M, Chen R. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50:12–8.

    Article  Google Scholar 

  6. Utomo AT, Poth H, Robbins PT, Andrzej W, Pacek W. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf. 2012;55:7772–81.

    Article  CAS  Google Scholar 

  7. Fedele L, Colla L, Bobbo S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int J Refrig. 2012;35:1359–66.

    Article  CAS  Google Scholar 

  8. Rudyaka VY, Dimovb SV, Kuznetsovb VV, Bardakhanov SP. Measurement of the viscosity coefficient of an ethylene glycol-based nanofluid with silicon_dioxide particles. Dokl Phys. 2013;58:173–6.

    Article  Google Scholar 

  9. Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9:151–67.

    Article  Google Scholar 

  10. Abdul Hamid K, Azmia WH, Mamata R, Usria NA, Najafi G. Investigation of Al2O3 nanofluid viscosity for different water/EG mixture based. Energy Procedia. 2015;79:354–9.

    Article  Google Scholar 

  11. Li H, Wang L, He Y, Hu Y, Zhu J, Jiang B. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl Therm Eng. 2015;88:363–8.

    Article  CAS  Google Scholar 

  12. Jarahnejad M, Haghighi EB, Saleemi M, Nikkam N, Khodabandeh R, Palm B, Toprak MS, Muhammed M. Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids. Rheol Acta. 2015;54:411–22.

    Article  CAS  Google Scholar 

  13. Esfe MH, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2–ethylene glycol nanofluids finding a critical temperature. J Therm Anal Calorim. 2015;120:1145–9.

    Article  Google Scholar 

  14. Fontes DH, Ribatski G, Filho EPB. Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil. Diam Relat Mater. 2015;58:115–21.

    Article  CAS  Google Scholar 

  15. Abbasi S, Zebarjad SM, Baghban SHN, Youssefi A, Ekrami-Kakhki M. Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes, with TiO2 nanoparticles/water nanofluids. J Therm Anal Calorim. 2016;123:81–9.

    Article  CAS  Google Scholar 

  16. Etaig S, Hasan R, Perer N. Investigation of a new effective viscosity model for nanofluids. Procedia Eng. 2016;157:404–13.

    Article  CAS  Google Scholar 

  17. Meybodia MK, Daryasafar A, Koochia MM, Moghadasi J, Meybodi RB, Ghahfarokhi AK. A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO. J Taiwan Inst Chem Eng. 2016;58:19–27.

    Article  Google Scholar 

  18. Syam Sundar L, Manoj K, Antonio S, Sousa CM. Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures. Diam Relat Mater. 2016;69:49–60.

    Article  Google Scholar 

  19. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Physica E. 2016;84:564–70.

    Article  CAS  Google Scholar 

  20. Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, SelimDalkılıça A, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.

    Article  CAS  Google Scholar 

  21. Bidgoli MR, Kolahchi R, Karimi MS. An experimental study and new correlations of viscosity of ethylene glycol–water based nanofluid at various temperatures and different solid concentrations. Struct Eng Mech. 2016;58:93–102.

    Article  Google Scholar 

  22. Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transf. 2016;76:41–5.

    Article  CAS  Google Scholar 

  23. Menbari A, Alemrajabi AA, Ghayeb Y. Investigation on the stability, viscosity and extinction coefficient of CuO–Al2O3/water binary mixture nanofluid. Exp Therm Fluid Sci. 2016;74:122–9.

    Article  CAS  Google Scholar 

  24. Aberoumand S, Moghaddam AJ. Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. J Taiwan Inst Chem Eng. 2017;71:315–22.

    Article  CAS  Google Scholar 

  25. Nadooshan AA. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Physica E. 2017;87:15–9.

    Article  Google Scholar 

  26. Zyła G. Viscosity and thermal conductivity of MgO–EG nanofluids experimental results and theoretical models predictions. J Therm Anal Calorim. 2017. doi:10.1007/s10973-017-6130-x.

    Google Scholar 

  27. Aminian A. Predicting the effective viscosity of nanofluids for the augmentation of heat transfer in the process industries. J Mol Liq. 2017;229:300–8.

    Article  CAS  Google Scholar 

  28. Dalkilic AS, Küçükyıldırım BO, Akdogan Eker A, Çebi A, Tapana S, Jumpholkul C, Wongwises S. Experimental investigation on the viscosity of water-CNT and antifreeze-CNT nanofluids. Int Commun Heat Mass Transf. 2017;80:47–59.

    Article  CAS  Google Scholar 

  29. Chen H, Ding Y, He Y, Tan C. Rheological behavior of ethylene glycol based TiO2 nanofluids. Chem Phys Lett. 2007;444:333–7.

    Article  CAS  Google Scholar 

  30. Einstein A. Investigation on the theory of Brownian movement. New York: Dover; 1956.

    Google Scholar 

  31. Wang X, Zhu D, Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett. 2009;47:107–11.

    Article  Google Scholar 

  32. Rezaei M, Azimian AR, Toghraie D. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat Mass Transf. 2015;51:661–70.

    Article  CAS  Google Scholar 

  33. Rezaei M, Azimian AR, Toghraie D. Molecular dynamics study of an electro-kinetic fluid transport in a charged nanochannel based on the role of the stern layer. Physica A. 2015;426:25–34.

    Article  CAS  Google Scholar 

  34. Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  Google Scholar 

  35. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  36. Esfe MH, Akbari M, Semiromi DT, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014;45:409–32.

    Article  Google Scholar 

  37. Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Physica A. 2014;402:150–68.

    Article  CAS  Google Scholar 

  38. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:2016.

    Article  Google Scholar 

  39. Esfe MH, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene–glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.

    Article  Google Scholar 

  40. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5436-4.

    Google Scholar 

  41. Semiromi DT, Azimian AR. Molecular dynamics simulation of annular flow boiling with the modified Lennard–Jones potential function. Heat Mass Transf. 2012;48:141–52.

    Article  CAS  Google Scholar 

  42. Toghraie D, Alempour SMB, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    Article  CAS  Google Scholar 

  43. Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Therm Anal. 2015. doi:10.1007/s10973-014-4328-8.

    Google Scholar 

  44. Esfe MH, Afrand M, Gharehkhani S, Rostamiand H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8.

    Article  Google Scholar 

  45. Esfe MH, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.

    Article  Google Scholar 

  46. Esfe MH, Hassani A, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Article  Google Scholar 

  47. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.

    Article  CAS  Google Scholar 

  48. Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe MH, Kamali J, Toghraie D. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7:1550052.

    Article  Google Scholar 

  49. Noorian H, Toghraie D, Azimian AR. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. 2014;50:105–13.

    Article  CAS  Google Scholar 

  50. Karimipour A, Alipour H, Akbari OA, Semiromi DT, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water–silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Indian J Sci Technol. 2016;8:2015.

    Google Scholar 

  51. Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2016;7:1–11.

    Google Scholar 

  52. Akbari OA, Karimipour A, Toghraie D, Safaei MR, Alipour M, Goodarzi H, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comput. 2016;290:135–53.

    Google Scholar 

  53. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8:1–25.

    Article  CAS  Google Scholar 

  54. Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver–water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E. 2016;88:60–76.

    Article  Google Scholar 

  55. Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Physica E. 2017;123(87):134–40.

    Article  Google Scholar 

  56. Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32.

    Article  Google Scholar 

  57. Aghanajaf A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Physica E. 2017;85:103–8.

    Article  Google Scholar 

  58. Afrand M, Toghraie D, Karimipour A, Wongwises SA. Numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater. 2017;430:22–8.

    Article  CAS  Google Scholar 

  59. Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannel. Physica E. 2016;84:152–61.

    Article  CAS  Google Scholar 

  60. Semiromi DT, Azimian AR. Nanoscale Poiseuille flow and effects of modified Lennard–Jones potential function. Heat Mass Transf. 2010;46:791–801.

    Article  Google Scholar 

  61. Semiromi DT, Azimian AR. Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard–Jones potential function. Heat Mass Transf. 2010;46:287–94.

    Article  Google Scholar 

  62. Semiromi DT, Azimian AR. Molecular dynamics simulation of nonodroplets with the modified Lennard–Jones potential function. Heat Mass Transf. 2010;47:579–88.

    Article  Google Scholar 

  63. Faridzadeh MR, Semiromi DT, Niroomand A. Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf Res. 2014; 45.

  64. Oveissi S, Eftekhari SA, Toghraie D. Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure. Physica E. 2016;83:164–73.

    Article  CAS  Google Scholar 

  65. Oveissi S, Toghraie D, Eftekhari SA. Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid. Physica E. 2016;83:275–83.

    Article  CAS  Google Scholar 

  66. Esfahani MA, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of silica/water–ethylene glycol (40%–60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq. 2017;232:105–12.

    Article  CAS  Google Scholar 

  67. Esfe MH, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.

    Article  Google Scholar 

  68. Esfe MH, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126(2):643–8.

    Article  Google Scholar 

  69. Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq. 2017;236:254–65.

    Article  CAS  Google Scholar 

  70. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67.

    Article  CAS  Google Scholar 

  71. Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017. doi:10.1016/j.energy.2017.06.104.

    Google Scholar 

  72. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E. 2017;86:68–75.

    Article  CAS  Google Scholar 

  73. Ahmadi GR, Toghraie D. Energy and exergy analysis of Montazeri steam power plant in Iran. Renew Sustain Energy Rev. 2016;56:454–63.

    Article  Google Scholar 

  74. Noorian H, Toghraie D, Azimian AR. The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation. Heat Mass Transf. 2014;50(1):95–104.

    Article  CAS  Google Scholar 

  75. Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E. 2017;93:167–78.

    Article  CAS  Google Scholar 

  76. Mirkalantari SA, Hashemian M, Eftekhari SA, Toghraie D. Pull-in instability analysis of rectangular nanoplate based on strain gradient theory considering surface stress effects. Physica B. 2017;519:1–14.

    Article  CAS  Google Scholar 

  77. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22.

    Article  CAS  Google Scholar 

  78. Tohidi M, Toghraie D. The effect of geometrical parameters, roughness and the number of nanoparticles on the self-diffusion coefficient in Couette flow in a nanochannel by using of molecular dynamics simulation. Physica B. 2017;518:20–32.

    Article  CAS  Google Scholar 

  79. Heydari M, Toghraie D, Akbari OA. The effect of semi-attached and offset mid-truncated ribs and water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci Eng Prog. 2017;2:140–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh, A.D., Toghraie, D. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J Therm Anal Calorim 131, 1449–1461 (2018). https://doi.org/10.1007/s10973-017-6696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6696-3

Keywords

Navigation