Skip to main content
Log in

Combustion characteristics of municipal sewage sludge with different initial moisture contents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion characteristics of municipal sewage sludge samples with five different initial water contents (5.02, 8.21, 17.33, 27.45 and 37.85%) were assessed by using a thermogravimetric analysis approach. The ignition temperatures of the samples increased with increasing the heating rates and their initial moisture content. Ignition, burnout and comprehensive performance indices of the samples increased with decreasing their initial moisture contents. Between heating rates of 20 and 80 K min−1, the average ignition, burnout and comprehensive performance indices of the sample with initial moisture content of 5.02% were about 1.2, 2.2 and 0.9 times more than those of the sample with initial moisture content of 37.85%. The average activation energies for the samples with 5.02, 8.21, 17.33, 27.45 and 37.85% moisture contents were 146.59, 148.02, 155.13, 156.70 and 168.39 kJ mol−1. There were certain linear relations among two main kinetic parameters for the samples with different moisture contents and their main combustion stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α :

Conversion degree

A :

The pre-exponential factor (s−1)

D :

Combustion index

E a :

Apparent activation energy (J mol−1)

m :

Mass, empirical constant in integral function

n :

Reaction order

R :

The universal gas constant (J mol−1 K−1)

t :

Time (min)

T :

Temperature (K/°C)

β :

Heating rate (K min−1)

b:

Burnout

c:

Comprehensive performance

C:

Char

i:

Ignition

m:

Mean

max:

Maximum

MC:

Moisture content

p:

Peak

VM:

Volatile matter

References

  1. Zhang XY, Chen MQ, Huang YW, Xue F. Isothermal hot air drying behavior of municipal sewage sludge briquettes coupled with lignite additive. Fuel. 2016;171:108–15. doi:10.1016/j.fuel.2015.12.052.

    Article  CAS  Google Scholar 

  2. Cui H, Ninomiya Y, Masui M, Mizukoshi H, Sakano T, Kanaoka C. Fundamental behaviors in combustion of raw sewage sludge. Energ Fuel. 2006;20(1):77–83.

    Article  CAS  Google Scholar 

  3. Saito M, Amagai K, Ogiwara G, Arai M. Combustion characteristics of waste material containing high moisture. Fuel. 2001;80(9):1201–9. doi:10.1016/S0016-2361(00)00208-8.

    Article  CAS  Google Scholar 

  4. Magdziarz A, Werle S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 2014;34(1):174–9. doi:10.1016/j.wasman.2013.10.033.

    Article  CAS  Google Scholar 

  5. Folgueras MB, Díaz RM, Xiberta J, Prieto I. Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel. 2003;82(15–17):2051–5. doi:10.1016/S0016-2361(03)00161-3.

    Article  CAS  Google Scholar 

  6. Calvo LF, Sánchez ME, Morán A, García AI. TG–MS as a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge. J Therm Anal Calorim. 2004;78(2):587–98. doi:10.1023/b:jtan.0000046121.14253.38.

    Article  CAS  Google Scholar 

  7. Kocabas-Atakli ZO, Okyay-Oner F, Yurum Y. Combustion characteristics of Turkish hazelnut shell biomass, lignite coal, and their respective blends via thermogravimetric analysis. J Therm Anal Calorim. 2015;119(3):1723–9. doi:10.1007/s10973-014-4348-4.

    Article  CAS  Google Scholar 

  8. Lai Z, Ma X, Tang Y, Lin H. A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA. Energy. 2011;36(2):819–24. doi:10.1016/j.energy.2010.12.033.

    Article  CAS  Google Scholar 

  9. Liu G, Liao Y, Guo S, Ma X, Zeng C, Wu J. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process. Appl Therm Eng. 2016;98:400–8. doi:10.1016/j.applthermaleng.2015.12.067.

    Article  CAS  Google Scholar 

  10. Yang YB, Sharifi VN, Swithenbank J. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds. Fuel. 2004;83(11–12):1553–62. doi:10.1016/j.fuel.2004.01.016.

    Article  CAS  Google Scholar 

  11. Ogada T, Werther J. Combustion characteristics of wet sludge in a fluidized bed: Release and combustion of the volatiles. Fuel. 1996;75(5):617–26. doi:10.1016/0016-2361(95)00280-4.

    Article  CAS  Google Scholar 

  12. Zhao W, Li Z, Zhao G, Zhang F, Zhu Q. Effect of air preheating and fuel moisture on combustion characteristics of corn straw in a fixed bed. Energ Convers Manag. 2008;49(12):3560–5. doi:10.1016/j.enconman.2008.07.006.

    Article  CAS  Google Scholar 

  13. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 2005;84(5):487–94.

    Article  CAS  Google Scholar 

  14. Liu X, Chen M, Wei Y. Assessment on oxygen enriched air co-combustion performance of biomass/bituminous coal. Renew Energ. 2016;92:428–36. doi:10.1016/j.renene.2016.02.035.

    Article  CAS  Google Scholar 

  15. Niu S, Chen M, Li Y, Xue F. Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel. 2016;178:129–38. doi:10.1016/j.fuel.2016.03.053.

    Article  CAS  Google Scholar 

  16. López R, Fernández C, Cara J, Martínez O, Sánchez ME. Differences between combustion and oxy-combustion of corn and corn–rape blend using thermogravimetric analysis. Fuel Process Technol. 2014;128:376–87. doi:10.1016/j.fuproc.2014.07.036.

    Article  Google Scholar 

  17. Yuanyuan Z, Yanxia G, Fangqin C, Kezhou Y, Yan C. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim Acta. 2015;614:137–48. doi:10.1016/j.tca.2015.06.018.

    Article  Google Scholar 

  18. López R, Fernández C, Fierro J, Cara J, Martínez O, Sánchez ME. Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis. Energy. 2014;74:845–54. doi:10.1016/j.energy.2014.07.058.

    Article  Google Scholar 

  19. Li Q, Zhao C, Chen X, Wu W, Li Y. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. J Anal Appl Pyrol. 2009;85(1–2):521–8. doi:10.1016/j.jaap.2008.10.018.

    Article  CAS  Google Scholar 

  20. Doğan F, Kaya İ, Bilici A. Azomethine-based phenol polymer: synthesis, characterization and thermal study. Synth Met. 2011;161(1–2):79–86. doi:10.1016/j.synthmet.2010.11.001.

    Google Scholar 

  21. Othman MB, Khan A, Ahmad Z, Zakaria MR, Ullah F, Akil HM. Kinetic investigation and lifetime prediction of Cs–NIPAM–MBA-based thermo-responsive hydrogels. Carbohydr Polym. 2016;136:1182–93. doi:10.1016/j.carbpol.2015.10.034.

    Article  CAS  Google Scholar 

  22. Sun R, Ismail TM, Ren X, Abd El-SalamM. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Waste Manag. 2015;39:166–78. doi:10.1016/j.wasman.2015.02.018.

    Article  Google Scholar 

  23. Liang L, Sun R, Fei J, Wu S, Liu X, Dai K, et al. Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Bioresour Technol. 2008;99(15):7238–46. doi:10.1016/j.biortech.2007.12.061.

    Article  CAS  Google Scholar 

  24. Zou C, Zhang L, Cao S, Zheng C. A study of combustion characteristics of pulverized coal in O2/H2O atmosphere. Fuel. 2014;115:312–20. doi:10.1016/j.fuel.2013.07.025.

    Article  CAS  Google Scholar 

  25. Moore DS, McCabe GP. Introduction to the practice of statistics. San Francisco: WH Freeman/Times Books/Henry Holt & Co; 1989.

    Google Scholar 

  26. Lee H-S, Bae S-K. Combustion kinetics of sewage sludge and combustible wastes. J Mater Cycles Waste. 2009;11(3):203–7. doi:10.1007/s10163-009-0251-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds of China for the Central Universities under No. 2016YJS123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqian Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1030 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Chen, M., Li, Y. et al. Combustion characteristics of municipal sewage sludge with different initial moisture contents. J Therm Anal Calorim 129, 1189–1199 (2017). https://doi.org/10.1007/s10973-017-6262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6262-z

Keywords

Navigation