Skip to main content
Log in

Effect of reaction temperature on intercalation of octyltrimethylammonium chloride into kaolinite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The structural property, thermal behavior, and morphology of octyltrimethylammonium chloride–kaolinite complexes prepared at different reaction temperatures were studied by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry–differential scanning calorimetry, and scanning electron microscope. The present study demonstrated that the arrangement model of octyltrimethylammonium cations (OTAC+) within the kaolinite interlayer space was independent of reaction temperature. The alkyl chains adopted a similar rigid paraffin-bilayer arrangement with different tilted angles. Although the intercalation led to an increased number of gauche conformers, the number of nonlinear conformers remained constant with increasing temperature. With increasing temperature, the number of trans conformers continuously augmented and resulted in decreased gauche/trans ratio. Therefore, the molecular environment remained solid like. Simultaneously, the surfactant packing density gradually increased, along with the decreasing water content in the organoclays. This effect improved thermal stability and hydrophobicity. The thermal decomposition processes of the kaolinite–OTAC+ complex can be divided into four steps. Furthermore, SEM images showed that the morphology of these complexes was strongly dependent on the given temperature. In general, increasing the temperature within the limited given temperature (≤70 °C) promoted the transformation from platy layers to nanoscrolls. Most of the transformed nanoscrolls were acquired in the products prepared at 70 °C, and further increasing in temperature decreased the nanoscrolls yield. Nevertheless, the packing density increased in the process, thereby demonstrating that the packing density not only promoted nanoscrolls transformation but also prevented the progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meier LP, Nueesch R, Madsen FT. Organic pillared clays. J Colloid Interface Sci. 2001;238(1):24–32.

    Article  CAS  Google Scholar 

  2. Manias E, Hadziioannou G, ten Brinke G. Inhomogeneities in sheared ultrathin lubricating films. Langmuir. 1996;12(19):4587–93.

    Article  CAS  Google Scholar 

  3. He H, Duchet J, Galy J, Gérard JF. Influence of cationic surfactant removal on the thermal stability of organoclays. J Colloid Interface Sci. 2006;295(1):202–8.

    Article  CAS  Google Scholar 

  4. Choy JH, Kwak SY, Han YS, Kim BW. New organo-montmorillonite complexes with hydrophobic and hydrophilic functions. Mater Lett. 1997;33(3):143–7.

    Article  CAS  Google Scholar 

  5. Wu J, Lerner MM. Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers. Chem Mater. 1993;5(6):835–8.

    Article  CAS  Google Scholar 

  6. Wang Z, Pinnavaia TJ. Nanolayer reinforcement of elastomeric polyurethane. Chem Mater. 1998;10(12):3769–71.

    Article  CAS  Google Scholar 

  7. Cheng H, Liu Q, Zhang J, Yang J, Frost RL. Delamination of kaolinite-potassium acetate intercalates by ball-milling. J Colloid Interface Sci. 2010;348(2):355–9.

    Article  CAS  Google Scholar 

  8. Cheng H, Zhang S, Liu Q, Li X, Frost RL. The molecular structure of kaolinite-potassium acetate intercalation complexes: a combined experimental and molecular dynamic simulation study. Appl Clay Sci. 2015;116:273–80.

    Article  Google Scholar 

  9. Kwolek T, Hodorowicz M, Stadnicka K, Czapkiewicz J. Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite. J Colloid Interface Sci. 2003;264(1):14–9.

    Article  CAS  Google Scholar 

  10. Tang Y, Hu Y, Song L, Zong R, Gui Z, Chen Z, et al. Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym Degrad Stab. 2003;82(1):127–31.

    Article  CAS  Google Scholar 

  11. Yilmaz N, Yapar S. Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites. Appl Clay Sci. 2004;27(3–4):223–8.

    Article  CAS  Google Scholar 

  12. Lee JY, Lee HK. Characterization of organobentonite used for polymer nanocomposites. Mater Chem Phys. 2004;85(2–3):410–5.

    Article  CAS  Google Scholar 

  13. Kozak M, Domka L. Adsorption of the quaternary ammonium salts on montmorillonite. J Phys Chem Solids. 2004;65(2–3):441–5.

    Article  CAS  Google Scholar 

  14. Someya Y, Shibata M. Morphology, thermal, and mechanical properties of vinylester resin nanocomposites with various organo-modified montmorillonites. Polym Eng Sci. 2004;44(11):2041–6.

    Article  CAS  Google Scholar 

  15. Favre H, Lagaly G. Organo-bentonites with quaternary alkylammonium ions. Clay Miner. 1991;26(1):19–32.

    Article  CAS  Google Scholar 

  16. Lagaly G. Characterization of clays by organic compounds. Clay Miner. 1981;16:1–21.

    Article  CAS  Google Scholar 

  17. Klapyta Z, Fujita T, Iyi N. Adsorption of dodecyl- and octadecyltrimethylammonium ions on a smectite and synthetic micas. Appl Clay Sci. 2001;19:5–10.

    Article  CAS  Google Scholar 

  18. He H, Ma Y, Zhu J, Yuan P, Qing Y. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl Clay Sci. 2010;48(1–2):67–72.

    Article  CAS  Google Scholar 

  19. Zhu J, He H, Guo J, Yang D, Xie X. Arrangement models of alkylammonium cations in the interlayer. Chin Sci Bull. 2003;4(48):368–72.

    Google Scholar 

  20. Bergaya F, Lagaly G. Handbook of clay science. 2nd ed. Amsterdam: Elsevier; 2013.

    Google Scholar 

  21. Vaia RA, Teukolsky RK, Giannelis EP. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater. 1994;6:1017–22.

    Article  CAS  Google Scholar 

  22. Heller L, Yariv S. Anilinium montmorillonites and the formation of ammonium/amine associations. Isr J Chem. 1970;8(3):391–7.

    Article  CAS  Google Scholar 

  23. Kuroda Y, Ito K, Itabashi K, Kuroda K. One-step exfoliation of kaolinites and their transformation into nanoscrolls. Langmuir. 2011;27(5):2028–35.

    Article  CAS  Google Scholar 

  24. Yuan P, Tan D, Annabi-Bergaya F, Yan W, Liu D, Liu Z. From platy kaolinite to aluminosilicate nanoroll via one-step delamination of kaolinite: effect of the temperature of intercalation. Appl Clay Sci. 2013;83–84:68–76.

    Article  Google Scholar 

  25. Long H, Zheng Y, Guo Y, Li B. Preparation and characterization of kaolinite nanoscrolls. ChinJ InorgChem. 2012;28(6):1210–6.

    CAS  Google Scholar 

  26. Frost RL, Kristof J, Paroz GN, Kloprogge JT. Molecular structure of dimethyl sulfoxide intercalated kaolinites. J Phys Chem, B. 1998;102(43):8519–32.

    Article  CAS  Google Scholar 

  27. Komori Y, Enoto H, Takenawa R, Hayashi S, Sugahara Y, Kuroda K. Modification of the interlayer surface of kaolinite with methoxy groups. Langmuir. 2000;18:5506–8.

    Article  Google Scholar 

  28. Liu Q, Zhang S, Cheng H, Wang D, Li X, Hou X, et al. Thermal behavior of kaolinite-urea intercalation complex and molecular dynamics simulation for urea molecule orientation. J Therm Anal Calorim. 2014;117(1):189–96.

    Article  CAS  Google Scholar 

  29. Tunney JJ, Detellier C. Interlamellar covalent grafting of organic units on kaolinite. Chem Mater. 1993;5(6):747–8.

    Article  CAS  Google Scholar 

  30. Yui T, Yoshida H, Tachibana H, Tryk DA, Inoue H. Intercalation of polyfluorinated surfactants into clay minerals and the characterization of the hybrid compounds. Langmuir. 2002;18:891–6.

    Article  CAS  Google Scholar 

  31. He H, Frost RL, Zhu J. Infrared study of HDTMA+ intercalated montmorillonite. Spectrochim Acta A. 2004;60(12):2853–9.

    Article  Google Scholar 

  32. Yan L, Low PF, Roth CB. Swelling pressure of montmorillonite layers versus HOH bending frequency of the interlayer water. Clays Clay Miner. 1996;44(6):749–56.

    Article  CAS  Google Scholar 

  33. Yan L, Roth CB, Low PF. Changes in the Si-O vibrations of smectite layers accompanying the sorption of interlayer water. Langmuir. 1996;12(18):4421–9.

    Article  CAS  Google Scholar 

  34. Johnston C, Sposito G, Erickson C. Vibrational probe studies of water interactions with montmorillonite. Clays Clay Miner. 1992;40(6):722–30.

    Article  CAS  Google Scholar 

  35. Madejova J, Janek M, Komadel P, Herbert H-J, Moog H. FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems. Appl Clay Sci. 2002;20(6):255–71.

    Article  CAS  Google Scholar 

  36. Venkataraman N, Vasudevan S. Conformation of methylene chains in an intercalated surfactant bilayer. J Phys Chem, B. 2001;105(9):1805–12.

    Article  CAS  Google Scholar 

  37. Hagemann H, Snyder R, Peacock A, Mandelkern L. Quantitative infrared methods for the measurement of crystallinity and its temperature dependence: polyethylene. Macromolecules. 1989;22(9):3600–6.

    Article  CAS  Google Scholar 

  38. Kawai T, Umemura J, Takenaka T, Kodama M, Seki S. Fourier transform infrared study on the phase transitions of an octadecyltrimethylammonium chloride-water system. J Colloid Interface Sci. 1985;103(1):56–61.

    Article  CAS  Google Scholar 

  39. Cameron DG, Umemura J, Wong PT, Mantsch HH. A Fourier transform infrared study of the coagel to micelle transitions of sodium laurate and sodium oleate. Colloids Surf. 1982;4(2):131–45.

    Article  CAS  Google Scholar 

  40. Snyder R, Strauss H, Elliger C. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J Phys Chem. 1982;86(26):5145–50.

    Article  CAS  Google Scholar 

  41. Ma Y, Zhu J, He H, Yuan P, Shen W, Liu D. Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochim Acta A. 2010;76(2):122–9.

    Article  Google Scholar 

  42. He H, Ding Z, Zhu J, Yuan P, Xi Y, Yang D, et al. Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner. 2005;53(3):287–93.

    Article  CAS  Google Scholar 

  43. Yariv S. The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl Clay Sci. 2004;24(3–4):225–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (51034006), Beijing Natural Science Foundation (8164062), Beijing Nova Program (xx2015B081), and Beijing talent plan (2014000020124G164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinfu Liu or Hongfei Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, Q., Cheng, H. et al. Effect of reaction temperature on intercalation of octyltrimethylammonium chloride into kaolinite. J Therm Anal Calorim 128, 1555–1564 (2017). https://doi.org/10.1007/s10973-016-6052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6052-z

Keywords

Navigation