Skip to main content
Log in

Quasi-isothermal and heat–cool protocols from MT-DSC

Influence on the values extracted for the cooperativity length calculation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Understanding the evolution of the cooperative molecular mobility as a function of time and temperature remains an unsolved question in condensed matter physics. Many recent works concern the question of the molecular dynamic slowdown in a temperature domain ranging from the crossover temperature T c (beginning of cooperative relaxation) down to the calorimetric glass transition temperature T g. Recent studies have shown that the estimation of cooperativity length based on calorimetric investigations using Donth’s approach can be extended to a wider temperature range from T g to T c. To describe the relaxation time evolution and the characteristic length evolution of cooperative motions, besides the Donth’s fluctuation approach other models exist in the literature such as “4 points correlation function” model. Whatever the model used, calorimetric investigations are needed to estimate the heat capacity as a function of the temperature. In this work, we have focused our attention on the modulated temperature differential scanning calorimetry (MT-DSC) experiments and we have tested different MT-DSC protocols allowing the heat capacity determination. For this goal we decided to work on different amorphous glass formers in order to cover a large range of glass transition temperature. The influence of the protocol used on the cooperativity length calculation is discussed in detail. Lissajous figures were constructed to verify whether the steady state is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139.

    Article  CAS  Google Scholar 

  2. Lačević N, Starr FW, Schrøder TB, Glotzer SC. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J Chem Phys. 2003;119:7372–87.

    Article  Google Scholar 

  3. Berthier L, Biroli G, Bouchaud JP, Cipelletti L, El Masri D, L’Hote D, et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science. 2005;310:1797–800.

    Article  CAS  Google Scholar 

  4. Tarjus G, Kivelson SA, Nussinov Z, Viot P. The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J Phys Condens Matter. 2005;17:R1143.

    Article  CAS  Google Scholar 

  5. Xia X, Wolynes PG. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc Natl Acad Sci USA. 2000;97:2990–4.

    Article  CAS  Google Scholar 

  6. Roland CM. Relaxation phenomena in vitrifying polymers and molecular liquids. Macromolecules. 2010;43:7875–90.

    Article  CAS  Google Scholar 

  7. Capaccioli S, Ruocco G, Zamponi F. Dynamically correlated regions and configurational entropy in supercooled liquids. J Phys Chem B. 2008;112:10652–8.

    Article  CAS  Google Scholar 

  8. Berthier L, Biroli G, Bouchaud J-P, Kob W, Miyazaki K, Reichman DR. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. J Chem Phys. 2007;126:184503.

    Article  CAS  Google Scholar 

  9. Saiter JM, Grenet J, Dargent E, Saiter A, Delbreilh L. Glass transition temperature and value of the relaxation time at Tg in vitreous polymers. Macromol Symp. 2007;258:152–61.

    Article  CAS  Google Scholar 

  10. Donth E. The size of cooperatively rearranging regions at the glass transition. J Non Cryst Solids. 1982;53:325–30.

    Article  CAS  Google Scholar 

  11. Saiter A, Delbreilh L, Couderc H, Arabeche K, Schönhals A, Saiter J-M. Temperature dependence of the characteristic length scale for glassy dynamics: combination of dielectric and specific heat spectroscopy. Phys Rev E. 2010;81:041805.

    Article  CAS  Google Scholar 

  12. Saiter A, Prevosto D, Passaglia E, Couderc H, Delbreilh L, Saiter JM. Cooperativity length scale in nanocomposites: interfacial and confinement effects. Phys Rev E. 2013;88:042605.

    Article  CAS  Google Scholar 

  13. Hamonic F, Prevosto D, Dargent E, Saiter A. Contribution of chain alignment and crystallization in the evolution of cooperativity in drawn polymers. Polymer. 2014;55:2882–9.

    Article  CAS  Google Scholar 

  14. Füllbrandt M, Purohit PJ, Schönhals A. Combined FTIR and dielectric investigation of poly(vinyl acetate) adsorbed on silica particles. Macromolecules. 2013;46:4626–32.

    Article  Google Scholar 

  15. Arabeche K, Delbreilh L, Adhikari R, Michler GH, Hiltner A, Baer E, et al. Study of the cooperativity at the glass transition temperature in PC/PMMA multilayered films: influence of thickness reduction from macro- to nanoscale. Polymer. 2012;53:1355–61.

    Article  CAS  Google Scholar 

  16. Arabeche K, Delbreilh L, Saiter J-M, Michler GH, Adhikari R, Baer E. Fragility and molecular mobility in micro- and nano-layered PC/PMMA films. Polymer. 2014;55:1546–51.

    Article  CAS  Google Scholar 

  17. Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E. Structural dependence of the molecular mobility in the amorphous fractions of polylactide. Macromolecules. 2014;47:5186–97.

    Article  CAS  Google Scholar 

  18. Hamonic F, Saiter A, Dargent E. Evidence of cooperativity length anisotropy in drawn polymers. Mater Lett. 2014;128:12–4.

    Article  CAS  Google Scholar 

  19. Delpouve N, Lixon C, Saiter A, Dargent E, Grenet J. Amorphous phase dynamics at the glass transition in drawn semi-crystalline polyester. J Therm Anal Calorim. 2009;97:541–6.

    Article  CAS  Google Scholar 

  20. Saiter A, Couderc H, Grenet J. Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations. J Therm Anal Calorim. 2007;88:483–8.

    Article  CAS  Google Scholar 

  21. Dobircau L, Delpouve N, Herbinet R, Domenek S, Le Pluart L, Delbreilh L, Ducruet V, Dargent E. Molecular mobility and physical ageing of plasticized poly(lactide). Polym Eng Sci. 2015;55:858–865.

  22. Höhne GWH, Merzlyakov M, Schick C. Calibration of magnitude and phase angle of TMDSC part 1: basic considerations. Thermochim Acta. 2002;391:51–67.

    Article  Google Scholar 

  23. Schick C. Chapter 16 temperature modulated differential scanning calorimetry (TMDSC)-basics and applications to polymers. In: Cheng SZD, editor. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier Science B.V; 2002. p. 713–810.

    Google Scholar 

  24. Wunderlich B. Thermal analysis tools. In: Thermal analysis of polymeric materials. Berlin: Springer; 2005. p. 279–454.

  25. Merzlyakov M, Höhne GWH, Schick C. Calibration of magnitude and phase angle of TMDSC part 2: calibration practice. Thermochim Acta. 2002;391:69–80.

    Article  CAS  Google Scholar 

  26. Weyer S, Hensel A, Schick C. Phase angle correction for TMDSC in the glass-transition region. Thermochim Acta. 1997;304–305:267–75.

    Article  Google Scholar 

  27. Schawe JEK, Hütter T, Heitz C, Alig I, Lellinger D. Stochastic temperature modulation: a new technique in temperature-modulated DSC. Thermochim Acta. 2006;446:147–55.

    Article  Google Scholar 

  28. Carpentier L, Bustin O, Descamps M. Temperature-modulated differential scanning calorimetry as a specific heat spectroscopy. J Phys Appl Phys. 2002;35:402.

    Article  CAS  Google Scholar 

  29. Wunderlich B, Jin Y, Boller A. Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93.

    Article  CAS  Google Scholar 

  30. Boller A, Jin Y, Wunderlich B. Heat capacity measurement by modulated DSC at constant temperature. J Therm Anal. 1994;42:307–30.

    Article  CAS  Google Scholar 

  31. Ding E-Y, Cheng R-S. Novel quasi-isothermal method of measuring heat capacity in temperature modulated differential scanning calorimetry. Thermochim Acta. 2001;376:133–9.

    Article  CAS  Google Scholar 

  32. Krishnan RV, Nagarajan K. Evaluation of heat capacity measurements by temperature-modulated differential scanning calorimetry. J Therm Anal Calorim. 2010;102:1135–40.

    Article  Google Scholar 

  33. Paka Jeongihm, Wunderlich Bernhard. Heat Capacity by sawtooth-modulation, standard heat-flux differential scanning calorimeter with close control of the heater temperature. Thermochim Acta. 2001;367–368:229–38.

    Article  Google Scholar 

  34. Bustin O, Descamps M. Slow structural relaxations of glass-forming maltitol by modulated DSC calorimetry. J Chem Phys. 1999;110:10982–92.

    Article  CAS  Google Scholar 

  35. Pak J, Pyda M, Wunderlich B. Rigid amorphous fractions and glass transitions in poly(oxy-2,6-dimethyl-1,4-phenylene)†. Macromolecules. 2003;36:495–9.

    Article  CAS  Google Scholar 

  36. Pyda M, Wunderlich B. Reversible and irreversible heat capacity of poly(trimethylene terephthalate) analyzed by temperature-modulated differential scanning calorimetry. J Polym Sci, Part B: Polym Phys. 2000;38:622–31.

    Article  CAS  Google Scholar 

  37. Pyda M, Wunderlich B. Reversing and nonreversing heat capacity of Poly(lactic acid) in the glass transition region by TMDSC. Macromolecules. 2005;38:10472–9.

    Article  CAS  Google Scholar 

  38. Genovese A, Shanks RA. Crystallization and melting of isotactic polypropylene in response to temperature modulation. J Therm Anal Calorim. 2004;75:233–48.

    Article  CAS  Google Scholar 

  39. Hu X, Kaplan D, Cebe P. Thermal analysis of protein–metallic ion systems. J Therm Anal Calorim. 2009;96:827–34.

    Article  CAS  Google Scholar 

  40. Shanks RA. Linear thermal expansion, thermal ageing, relaxations and post-cure of thermoset polymer composites using modulated temperature thermomechanometry. J Therm Anal Calorim. 2011;106:151–8.

    Article  CAS  Google Scholar 

  41. Gracia-Fernández C, Tarrío-Saavedra J, López-Beceiro J, Gómez-Barreiro S, Naya S, Artiaga R. Temperature modulation in PDSC for monitoring the curing under pressure. J Therm Anal Calorim. 2011;106:101–7.

    Article  Google Scholar 

  42. Shanks RA, Gunaratne LMWK. Comparison of reversible melting behaviour of poly(3-hydroxybutyrate) using quasi-isothermal and other modulated temperature differential scanning calorimetry techniques. J Therm Anal Calorim. 2011;104:1117–24.

    Article  CAS  Google Scholar 

  43. Gracia-Fernández CA, Davies P, Gómez-Barreiro S, Beceiro JL, Tarrío-Saavedra J, Artiaga R. A vitrification and curing study by simultaneous TMDSC-photocalorimetry. J Therm Anal Calorim. 2010;102:1057–62.

    Article  Google Scholar 

  44. Wunderlich B. The ATHAS database on heat capacities of polymers. Pure Appl Chem. 1995;67:1019–26.

    Article  CAS  Google Scholar 

  45. Verma-Nair M, Wunderlich B. Heat capacity and other thermodynamic properties of linear macromolecules X Update of the ATHAS 1980 data bank. J Phys Chem Ref Data. 1991;22:349–404.

    Article  Google Scholar 

  46. http://www.springermaterials.com/docs/content/athas.html.

  47. Hempel E, Hempel G, Hensel A, Schick C, Donth E. Characteristic length of dynamic glass transition near Tg for a wide assortment of glass-forming substances. J Phys Chem B. 2000;104:2460–6.

    Article  CAS  Google Scholar 

  48. Archer DG. Thermodynamic properties of synthetic sapphire (a-A1203), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allisson Saiter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rijal, B., Delbreilh, L., Saiter, JM. et al. Quasi-isothermal and heat–cool protocols from MT-DSC. J Therm Anal Calorim 121, 381–388 (2015). https://doi.org/10.1007/s10973-015-4671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4671-4

Keywords

Navigation