Skip to main content
Log in

Kinetic study of ignition of Mg/NaNO3 pyrotechnic using non-isothermal TG/DSC technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal TG/DSC technique has been used to study the kinetic triplet of ignition reaction of Mg/NaNO3 pyrotechnic under nitrogen atmosphere at different heating rates (5, 10, 15, and 20 °C min−1). The TG/DSC results showed that the mass gain after ignition increased and the heat of ignition reaction decreased with increasing heating rate, indicating that the reaction between Mg and NaNO3 was not complete during the ignition process. The activation energy (E a) was calculated using Starink model-free method. The pre-exponential factor (A) and kinetic model function were determined by means of the compensation effect and the selected model was confirmed by the nonlinear model fitting method. The average values of E a and logA for the ignition reaction of Mg/NaNO3 were found to be 148.46 ± 3.37 kJ mol−1 and 10.04 min−1, respectively. The model fitting method proved that the ignition reaction of Mg/NaNO3 pyrotechnic follows the mechanism of A4 (g(α) = [−ln(1−α)]1/4) as a nucleation reaction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conkling JA. Chemistry of pyrotechnics: basic principles and theory. New York: Marcel Dekker Inc.; 1985.

    Google Scholar 

  2. De Klerk WPC, Colpa W, Ekeren PJ. Ageing studies of magnesium-sodium nitrate pyrotechnic compositions. J Therm Anal Calorim. 2006;85:203–7.

    Article  Google Scholar 

  3. Brown SD, Charsley EL, Goodall SJ, Laye PG, Rooney JJ, Griffiths TT. Studies on the ageing of a pyrotechnic composition using isothermal heat flow calorimetry and thermal analysis techniques. Thermochim Acta. 2003;401:53–61.

    Article  CAS  Google Scholar 

  4. Redkar AS, Mujumdar VA, Singh SN. Study on magnesium based pyrotechnic composition as a priming charge. Def Sci J. 1996;46:41–7.

    Article  CAS  Google Scholar 

  5. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 2008;87:244–51.

    Article  CAS  Google Scholar 

  6. Kang X, Zhang J, Zhang Q, Du K, Tang Y. Studies on ignition and afterburning processes of KClO4/Mg pyrotechnics heated in air. J Therm Anal Calorim. 2012;109:1333–40.

    Article  CAS  Google Scholar 

  7. Zhu CG, Wang HZ, Min L. Ignition temperature of magnesium powder and pyrotechnic composition. J Energ Mater. 2014;32:219–26.

    Article  CAS  Google Scholar 

  8. Musanic SM, Houra IF, Suceska M. Applicability of non-isothermal DSC and Ozawa method for studying kinetics of double base propellant decomposition. Cent Eur J Energ Mater. 2010;7:233–51.

    CAS  Google Scholar 

  9. Moghaddam AZ, Rees GJ. Thermoanalytical studies on pyrotechnic reactions. Scientia Iranica. 2003;10:267–72.

    CAS  Google Scholar 

  10. Chiu MH, Prenner EJ. Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci. 2011;3:39–59.

    Article  CAS  Google Scholar 

  11. Miao Y, Liping Ch, Jinyang Y, Jinhua P. International symposium on safety science and technology thermoanalytical investigation on pyrotechnic mixtures containing Mg–Al alloy powder and barium nitrate. Proc Eng. 2012;45:567–73.

    Article  Google Scholar 

  12. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  13. Chen G, Lee Ch, Kuo Y, Yen YW. A DSC study on the kinetics of disproportionation reaction of (hfac)CuI(COD). Thermochim Acta. 2007;456:89–93.

    Article  CAS  Google Scholar 

  14. Ribeiro B, Nohara L, Oishi S, Costa M, Botelho E. Nonoxidative thermal degradation kinetic of polyamide 6,6 reinforced with carbon nanotubes. J Thermoplast Compos Mater. 2013;26:1317–31.

    Article  CAS  Google Scholar 

  15. Yunqing H, Haixiang Ch, Naian L. New incremental isoconversional method for kinetic analysis of solid thermal decomposition. J Therm Anal Calorim. 2011;104:679–83.

    Article  Google Scholar 

  16. Jankovic B, Mentus S, Jankovic M. A kinetic study of the thermal decomposition process of potassium metabisulfite: estimation of distributed reactivity model. J Phys Chem Solids. 2008;69:1923–33.

    Article  CAS  Google Scholar 

  17. Ostmark H, Roman N. Laser ignition of pyrotechnic mixtures: ignition mechanisms. J Appl Phys. 1993;73:1993–2003.

    Article  Google Scholar 

  18. Rao RB, Singh H. Burning rate characteristics of Mg–NaNO3 propellants. Def Sci J. 1992;42:173–6.

    Article  CAS  Google Scholar 

  19. Palaiah RS, Joshi PH, Deo SS, Jawale DK, Valiv MH, Somayajulu MR. Luminous efficient compositions based on epoxy resin. Def Sci J. 2006;56:339–43.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  21. Bauer T, Laing D, Kröner U, Tamme R. Sodium nitrate for high temperature latent storage. In: The 11th international conference on thermal energy storage in stockholm, 2009.

  22. Conking JA, Mocella CJ. Chemistry of pyrotechnics basic principles and theory. New York: Taylor and Francis Group Inc.; 2011.

    Google Scholar 

  23. Chunmiao Y, Lifu Y, Chang L, Gang L, Shengjun Zh. Thermal analysis of magnesium reactions with nitrogen/oxygen gas mixtures. J Hazard Mater. 2013;260:707–14.

    Article  Google Scholar 

  24. Jriri T, Rogez J, Bergman C, Mathieu JC. Thermodynamic study of the condensed phases of NaNO3, KNO3, and CsNO3, and their transitions. Thermochim Acta. 1995;266:147–61.

    Article  CAS  Google Scholar 

  25. Hussain G, Rees GJ. A study on combustion behavior of carbon–sulphur–sodium nitrate mixture. J Therm Anal Calorim. 1991;37:757–62.

    Article  CAS  Google Scholar 

  26. Akbar J, Iqbal MS, Massey Sh, Masih R. Kinetics and mechanism of thermal degradation of pentose—and hexose—based carbohydrate polymers. Carbohydr Polym. 2012;90:1386–93.

    Article  CAS  Google Scholar 

  27. Fernandez d’Arlas B, Rueda L, Stefani PM, de la Caba K, Mondragon I, Eceiza A. Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester) diol. Thermochimica Acta. 2007;459:94–103.

    Article  Google Scholar 

  28. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  29. Pouretedal HR, Ebadpour R. Application of non-isothermal thermogravimetric method to interpret the decomposition kinetics of NaNO3, KNO3, and KClO4. Int J Thermophys. 2014;35:942–51.

    Article  CAS  Google Scholar 

  30. Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal degradation of chitosan. Chem Cent J. 2012;6:1–10.

    Article  Google Scholar 

  31. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  32. Ram IS, Singh K. Study of crystallization process in Se80In10Pb10 by iso-conversional methods. J Cryst Process Technol. 2013;3:49–55.

    Article  Google Scholar 

  33. Noisong P, Danvirutai C. Kinetics and mechanism of thermal dehydration of KMnPO4 H2O in a nitrogen atmosphere. Ind Eng Chem Res. 2010;49:3146–51.

    Article  CAS  Google Scholar 

  34. Pouretedal HR, Damiri S, Ghaemi EF. Non-isothermal studies on the thermal decomposition of C4 explosive using the TG/DTA technique. Cent Eur J Energ Mater. 2014;11:285–94.

    Google Scholar 

  35. Feng-Qi Zh, Rong-Zu H, Pei Ch, Yang L, Sheng-Lib G, Ji-Rong S, Qi-Zhen Sh. Kinetics and mechanism of the exothermic first-stage decomposition reaction of dinitroglycoluril. Chin J Chem. 2004;22:649–52.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) and Professor M. K. Amini for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Pouretedal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouretedal, H.R., Ravanbod, M. Kinetic study of ignition of Mg/NaNO3 pyrotechnic using non-isothermal TG/DSC technique. J Therm Anal Calorim 119, 2281–2288 (2015). https://doi.org/10.1007/s10973-014-4330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4330-1

Keywords

Navigation