Skip to main content
Log in

Curing kinetics and shape-memory behavior of an intrinsically toughened epoxy resin system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A diglycidylether of propoxylated bisphenol-A with two oxypropylene units (DGEBAPO-2) was prepared, and the structure was characterized by FTIR, 1H NMR, and ESI–MS, and a flexible curing agent 2-methyl-1,5-pentanediamine (MPDA) was used to obtain an intrinsically toughened network for potential shape-memory application. The curing kinetics of DGEBAPO-2/MPDA was systematically investigated by using both non-isothermal and isothermal DSC methods; in addition, the dynamic mechanical property, mechanical property, and shape-memory property were investigated by DMA, tensile experiment, and quantitative shape-memory evaluation method. The results showed that Šesták-Berggren model and Kamal model were able to well describe the non-isothermal curing reaction rate and isothermal curing reaction rate, respectively. Tensile test at 49 °C indicated that the cured DGEBAPO-2/MPDA combined a relatively large elongation at break of 95.53 ± 2.27 % with a relatively large tensile stress of 6.33 ± 0.11 MPa. Quantitative shape-memory evaluation revealed good shape-memory properties of cured DGEBAPO-2/MPDA with shape fixity of 98.88 ± 0.04 % and shape recovery of 96.67 ± 6.91 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pascault JP, Williams R. Epoxy polymers: new materials and innovations. Weinheim: Wiley-VCH; 2010.

    Book  Google Scholar 

  2. Petrie EM. Epoxy adhesive formulations. New York: McGraw-Hill Professional; 2006.

    Google Scholar 

  3. Santhosh Kumar KS, Biju R, Reghunadhan Nair CP. Progress in shape memory epoxy resins. React Funct Polym. 2013;73(2):421–30.

    Article  CAS  Google Scholar 

  4. Hu J, Institute T. Shape memory polymers and textiles. Cambridge: Woodhead Publishing Limited; 2007.

    Book  Google Scholar 

  5. Lendlein A. Shape-memory polymers. Heidelberg: Springer-Verlag; 2010.

    Book  Google Scholar 

  6. Rousseau IA, Xie T. Shape memory epoxy: composition, structure, properties and shape memory performances. J Mater Chem. 2010;20(17):3431–41.

    Article  CAS  Google Scholar 

  7. Xie T, Rousseau IA. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer. 2009;50(8):1852–6.

    Article  CAS  Google Scholar 

  8. Feldkamp DM, Rousseau IA. Effect of chemical composition on the deformability of shape-memory epoxies. Macromol Mater Eng. 2011;296(12):1128–41.

    Article  CAS  Google Scholar 

  9. Liu Y, Han C, Tan H, Du X. Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater Sci Eng, A. 2010;527(10):2510–4.

    Article  Google Scholar 

  10. Wei K, Zhu G, Tang Y, Tian G, Xie J. Thermomechanical properties of shape-memory hydro-epoxy resin. Smart Mater Struct. 2012;21(5):55022.

    Article  Google Scholar 

  11. Feldkamp DM, Rousseau IA. Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol Mater Eng. 2010;295(8):726–34.

    Article  CAS  Google Scholar 

  12. Leonardi AB, Fasce LA, Zucchi IA, Hoppe CE, Soulé ER, Pérez CJ, Williams RJ. Shape memory epoxies based on networks with chemical and physical crosslinks. Eur Polym J. 2011;47(3):362–9.

    Article  CAS  Google Scholar 

  13. Fan M, Yu H, Li X, Cheng J, Zhang J. Thermomechanical and shape-memory properties of epoxy-based shape-memory polymer using diglycidyl ether of ethoxylated bisphenol-A. Smart Mater Struct. 2013;22(5):55034.

    Article  Google Scholar 

  14. Fan M, Liu J, Li X, Zhang J, Cheng J. Thermal, mechanical and shape memory properties of an intrinsically toughened epoxy/anhydride system. J Polym Res. 2014;21:376.

    Article  Google Scholar 

  15. Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388(1):289–98.

    Article  CAS  Google Scholar 

  16. Macan J, Brnardić I, Ivanković M, Mencer HJ. DSC study of cure kinetics of DGEBA-based epoxy resin with poly (oxypropylene) diamine. J Therm Anal Calorim. 2005;81(2):369–73.

    Article  CAS  Google Scholar 

  17. Wan J, Bu Z, Xu C, Li B, Fan H. Learning about novel amine-adduct curing agents for epoxy resins: butyl-glycidylether-modified poly (propyleneimine) dendrimers. Thermochim Acta. 2011;519(1):72–82.

    Article  CAS  Google Scholar 

  18. Wan J, Fan H, Li B, Xu C, Bu Z. Synthesis and nonisothermal reaction of a novel acrylonitrile-capped poly (propyleneimine) dendrimer with epoxy resin. J Therm Anal Calorim. 2011;103(2):685–92.

    Article  CAS  Google Scholar 

  19. Wang H, Zhang Y, Zhu L, Zhang B, Zhang Y. Curing behavior and kinetics of epoxy resins cured with liquid crystalline curing agent. J Therm Anal Calorim. 2012;107(3):1205–11.

    Article  CAS  Google Scholar 

  20. Wan J, Li C, Bu Z, Xu C, Li B, Fan H. A comparative study of epoxy resin cured with a linear diamine and a branched polyamine. Chem Eng J. 2012;188:160–72.

    Article  CAS  Google Scholar 

  21. Saad GR, Naguib HF, Elmenyawy SA. Effect of organically modified montmorillonite filler on the dynamic cure kinetics, thermal stability, and mechanical properties of brominated epoxy/aniline formaldehyde condensates system. J Therm Anal Calorim. 2013;111(2):1409–17.

    Article  CAS  Google Scholar 

  22. Li C, Liu M, Liu Z, Qing M, Wang G. DSC and curing kinetics of epoxy resin using cyclohexanediol diglycidyl ether as active diluents. J Therm Anal Calorim. 2014;116(1):411–6.

    Article  CAS  Google Scholar 

  23. Lee K, Kim J, Bae J, Yang J, Hong S, Kim H. Studies on the thermal stabilization enhancement of ABS; synergistic effect by triphenyl phosphate and epoxy resin mixtures. Polymer. 2002;43(8):2249–53.

    Article  CAS  Google Scholar 

  24. Herrera González AM, D’Accorso NB, Cuevas Suárez CE, Fascio ML, García Serrano J, Alho MM, Zamarripa Calderón JE. Composite resins based on novel and highly reactive bisglycidyl methacrylate monomers. J Appl Polym Sci. 2014.

  25. Fan M, Liu J, Li X, Cheng J, Zhang J. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system. Thermochim Acta. 2013;554:39–47.

    Article  CAS  Google Scholar 

  26. Saralegi A, Foster EJ, Weder C, Eceiza A, Corcuera MA. Thermoplastic shape-memory polyurethanes based on natural oils. Smart Mater Struct. 2014;23(2):25033.

    Article  Google Scholar 

  27. Zhao SF, Zhang GP, Sun R, Wong CP. Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Express Polym Lett. 2014;8(2).

  28. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  29. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.

    Article  Google Scholar 

  30. Vyazovkin S. Advanced isoconversional method. J Therm Anal Calorim. 1997;49(3):1493–9.

    Article  CAS  Google Scholar 

  31. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.

    Article  CAS  Google Scholar 

  32. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Sbirrazzuoli N. Effect of viscosity on the kinetics of initial cure stages. Macromol Chem Phys. 2000;201(2):199–203.

    Article  CAS  Google Scholar 

  34. Smith IT. The mechanism of the crosslinking of epoxide resins by amines. Polymer. 1961;2:95–108.

    Article  CAS  Google Scholar 

  35. Xu L, Fu JH, Schlup JR. In situ near-infrared spectroscopic investigation of epoxy resin-aromatic amine cure mechanisms. J Am Chem Soc. 1994;116(7):2821–6.

    Article  CAS  Google Scholar 

  36. Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138(2):337–46.

    Article  Google Scholar 

  37. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Thermal Anal. 1977;11(3):445–7.

    Article  Google Scholar 

  38. Kamal MR. Thermoset characterization for moldability analysis. Polym Eng Sci. 1974;14(3):231–9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (Grant No. 2012AA03A205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junying Zhang or Jue Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Li, X., Zhang, J. et al. Curing kinetics and shape-memory behavior of an intrinsically toughened epoxy resin system. J Therm Anal Calorim 119, 537–546 (2015). https://doi.org/10.1007/s10973-014-4106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4106-7

Keywords

Navigation