Skip to main content
Log in

CaCl2·6H2O/Expanded graphite composite as form-stable phase change materials for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, CaCl2·6H2O/expanded graphite (EG) composite was prepared as a novel form-stable composite phase change material (PCM) through vacuum impregnation method. CaCl2·6H2O used as the PCM was dispersed by surfactant and then, was absorbed into the porous structure of the EG. The surfactant was used to enhance the bonding energy between CaCl2·6H2O and EG, which fulfilled the composites with good sealing performance and limited the leakage of the inside CaCl2·6H2O. Differential scanning calorimetry and thermal gravimetric analysis show that all the composite PCMs possess good thermal energy storage behavior and thermal stability. Thermal conductivity measurement displays that the conductivities of the samples have been significantly improved due to the highly thermal conductive EG. The thermal conductivity of the sample including 50 mass% CaCl2·6H2O (8.796 W m−1 K−1) is 14 times as that of pure CaCl2·6H2O (0.596 W m−1 K−1). Therefore, the obtained composite PCMs are promising for thermal energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hadjieva M, Kanev S, Argirov J. Thermophysical properties of some paraffins applicable to thermal energy storage. Sol Energy Mat Sol C. 1992;27:181–7.

    Article  Google Scholar 

  2. Pasupathy A, Velraj R, Seeniraj RV. Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sust Energy Rev. 2008;12(1):39–64.

    Article  Google Scholar 

  3. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energy Rev. 2009;13(2):318–45.

    Article  CAS  Google Scholar 

  4. Shukla A, Buddhi D, Sawhney RL. Solar water heaters with phase change material thermal energy storage medium: a review. Renew Sustain Energy Rev. 2009;13(8):2119–25.

    Article  CAS  Google Scholar 

  5. Shaikh S, Lafdi K. C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics. Carbon. 2010;48(3):813–24.

    Article  CAS  Google Scholar 

  6. Reddi RSB, Kumar Satuluri VSA, Rai US, Rai RN. Thermal, physicochemical and microstructural studies of binary organic eutectic systems. J Therm Anal Calorim. 2012;107:377–85.

    Article  CAS  Google Scholar 

  7. Zhang YP, Zhou GB, Lin KP, Zhang QL, Di HF. Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Build Environ. 2007;42(6):2197–209.

    Article  Google Scholar 

  8. Sharma SD, Sagara K. Latent heat storage materials and systems: a review. Int J Green Energy. 2005;2(1):1–56.

    Article  Google Scholar 

  9. Tyagi VV, Pandey AK, Kaushik SC, Tyagi SK. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2012;107:1345–52.

    Article  CAS  Google Scholar 

  10. Ren N, Wu YT, Wang T, Ma CF. Experimental study on optimized composition of mixed carbonate for phase change thermal storage in solar thermal power plant. J Therm Anal Calorim. 2011;104:1201–8.

    Article  CAS  Google Scholar 

  11. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L. Effects of MWNTS on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim. 2009;95(2):507–12.

    Article  CAS  Google Scholar 

  12. Kao HT, Li M, Lv XW, Tan JM. Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material. J Therm Anal Calorim. 2012;107:299–303.

    Article  CAS  Google Scholar 

  13. Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2012;107:949–54.

    Article  CAS  Google Scholar 

  14. Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2010;101:385–9.

    Article  CAS  Google Scholar 

  15. Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J, Zhang T. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87(2):369–73.

    Article  CAS  Google Scholar 

  16. Zhang ZG, Zhang N, Peng J, Fang XM, Gao XN, Fang YT. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy. 2012;91:426–31.

    Article  CAS  Google Scholar 

  17. Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mat Sol C. 2009;93:571–6.

    Article  Google Scholar 

  18. Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng. 2006;26:1652–61.

    Article  CAS  Google Scholar 

  19. Lai Q. Effect of expansion by microwave to properties of graphite. Non-met Mines. 2009;32(3):33–4.

    CAS  Google Scholar 

  20. Zhang P, Wang C, Wang RZ. Composite reactive block for heat transformer system and improvement of system performance. J Chem Eng Jpn. 2007;40:1275–80.

    Article  Google Scholar 

  21. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol. 2007;67:2528–34.

    Article  CAS  Google Scholar 

  22. Karaman S, Karaipekli A, Sarı A, Biçer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mat Sol C. 2011;95(7):1647–53.

    Article  CAS  Google Scholar 

  23. Zhang P, Hu Y, Song L, Ni JX, Xing WY, Wang J. Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Sol Energy Mat Sol C. 2010;94:360–5.

    Article  CAS  Google Scholar 

  24. Li M, Wu ZS, Tan JM. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method. Appl Energy. 2012;92:456–61.

    Article  CAS  Google Scholar 

  25. Sarı A, Karaipekli A, Alkan C. Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J. 2009;155:899–904.

    Article  Google Scholar 

  26. Karaıpeklı A, Sarı A, Kaygusuz K. Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage. Energy Sources Part A. 2009;31:814–23.

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support by the National Nature Science Foundation of China (Grant No. 51102230, 20833009, 51071146, 21173111, 20903095, 51071081, 51101145, U0734005 and 51102230), Liaoning BaiQianWan Talents Program (No. 2010921050), Liaoning Education Committee (L2010223), Solar Energy Action Plan of CAS and the National Basic Research Program (973 program) of China (2010CB631303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-xian Sun, Zhong Cao or Fen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Zj., Zhang, Hz., Sun, Lx. et al. CaCl2·6H2O/Expanded graphite composite as form-stable phase change materials for thermal energy storage. J Therm Anal Calorim 115, 111–117 (2014). https://doi.org/10.1007/s10973-013-3311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3311-0

Keywords

Navigation