Skip to main content
Log in

Determination of ligand to DNA binding parameters from two-dimensional DSC curves

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The application of the theory of DNA denaturation linked to ligand binding to differential scanning calorimetry (DSC) is a useful tool to simultaneously characterize the energetics of denaturation and binding. Although the general theory is well known, the current DSC-based approaches to study the DNA–ligand interaction do not utilize the full potential of this method. In this paper, we propose the analytical approach for detailed analysis of DNA–ligand interaction from DSC data. The DNA macromolecule is represented as an assembly of cooperative units which melt by two-state model. The explicit account of ligand distribution on polymeric DNA and the temperature dependences of melting and binding constants, as well as of enthalpies, are considered. Such approach enables to extract the binding constant, stoichiometry, enthalpy, entropy, and heat capacity changes from multiple excess heat capacity profiles obtained at varying concentrations of the ligand (i.e. two-dimensional DSC curves). The applicability of the developed approach was demonstrated using an example salmon testes DNA–proflavine DSC experiment. The full set of DNA melting and proflavine binding thermodynamic parameters was obtained. Comparison of the proflavine binding parameters obtained from DSC with those determined from alternative experimental methods has proved the usefulness of the DSC method for evaluation of the binding thermodynamics in DNA–ligand system. In addition, the approach developed in the present study, allows to evaluate the concentration dependences of all species in solution as a function of temperature. Analysis of these dependences has enabled to interpret fine effects on the DSC curves of DNA–ligand complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Jelesarov I, Bosshard HR. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit. 1999;12(1):3–18.

    Article  CAS  Google Scholar 

  2. Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12(17):2011–20.

    Article  CAS  Google Scholar 

  3. Marky LA, Blumenfeld KS, Breslauer KJ. Calorimetric and spectroscopic investigation of drug–DNA interactions. I. The binding of netropsin to poly d(AT). Nucleic Acids Res. 1983;11(9):2857–70.

    Article  CAS  Google Scholar 

  4. Marky LA, Snyder JG, Breslauer KJ. Calorimetric and spectroscopic investigation of drug–DNA interactions. II. Dipyrandium binding to poly d(AT). Nucleic Acids Res. 1983;11(16):5701–15.

    Article  CAS  Google Scholar 

  5. Cooper A. Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol. 1999;3:557–63.

    Article  CAS  Google Scholar 

  6. Barone G, Catanzano F, Del Vecchio P, Giancola C, Graziano G. Differential scanning calorimetry as a tool to study protein–ligand interactions. Pure Appl Chem. 1995;67:1867–72.

    Article  CAS  Google Scholar 

  7. Brandts JF, Lin L-N. Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry. 1990;29:6927–40.

    Article  CAS  Google Scholar 

  8. Celej S, Fidelio G, Dassie S. Protein unfolding coupled to ligand binding: differential scanning calorimetry simulation approach. J Chem Educ. 2005;82(1):85–92.

    Article  CAS  Google Scholar 

  9. Celej S, Dassie S, Gonzalez M, Bianconi M, Fidelio G. Differential scanning calorimetry as a tool to estimate binding parameters in multiligand binding proteins. Anal Biochem. 2006;350:277–84.

    Article  CAS  Google Scholar 

  10. Freire E. Statistical thermodynamic analysis of differential scanning calorimetry data: structural deconvolution of heat capacity function of proteins. Methods Enzymol. 1994;240:502–20.

    Article  CAS  Google Scholar 

  11. Leng F, Chaires JB, Waring MJ. Energetics of echinomycin binding to DNA. Nucleic Acids Res. 2003;31(21):6191–7.

    Article  CAS  Google Scholar 

  12. Leng F, Priebe W, Chaires JB. Ultratight DNA binding of a new bisintercalating anthracycline antibiotic. Biochemistry. 1998;37:1743–53.

    Article  CAS  Google Scholar 

  13. Barcelo F, Capo D, Portugal J. Thermodynamic characterization of the multivalent binding of chartreusin to DNA. Nucleic Acids Res. 2002;30(20):4567–73.

    Article  CAS  Google Scholar 

  14. Portugal J, Cashman DJ, Trent JO, Ferrer-Miralles N, Przewloka T, Fokt I, Priebe W, Chaires JB. A new bisintercalating anthracycline with picomolar DNA binding affinity. J Med Chem. 2005;48(26):8209–19.

    Article  CAS  Google Scholar 

  15. Crothers D. Statistical thermodynamics of nucleic acid melting transitions with coupled binding equilibria. Biopolymers. 1971;10(11):2147–60.

    Article  CAS  Google Scholar 

  16. Breslauer KJ, Freire E, Straume M. Calorimetry: a tool for DNA and ligand–DNA studies. Methods Enzymol. 1992;211:533–67.

    Article  CAS  Google Scholar 

  17. McGhee JD. Theoretical calculations of the helix–coil transition of DNA in the presence of large cooperatively binding ligands. Biopolymers. 1976;15(7):1345–75.

    Article  CAS  Google Scholar 

  18. Spink CH, Wellman SE. Thermal denaturation as tool to study DNA–ligand interactions. Methods Enzymol. 2001;340:193–211.

    Article  CAS  Google Scholar 

  19. Esposito D, Del Vecchio P, Barone G. Interactions with natural polyamines and thermal-stability of DNA—a DSC study and a theoretical reconsideration. J Am Chem Soc. 1997;119(11):2606–13.

    Google Scholar 

  20. Esposito D, Del Vecchio P, Barone G. A thermodynamic study of herring protamine–DNA complex by differential scanning calorimetry. Phys Chem Chem Phys. 2001;3:5320–5.

    Article  CAS  Google Scholar 

  21. Lane AN, Jenkins TC. Thermodynamics of nucleic acids and their interactions with ligands. Q Rev Biophys. 2000;33:255–306.

    Article  CAS  Google Scholar 

  22. Ren J, Jenkins TC, Chaires JB. Energetics of DNA intercalation reactions. Biochemistry. 2000;39:8439–47.

    Article  CAS  Google Scholar 

  23. Chaires JB. Energetics of drug–DNA interactions. Biopolymers. 1997;44(3):201–15.

    Article  CAS  Google Scholar 

  24. Mikulecky PJ, Feig AL. Heat capacity changes associated with nucleic acid folding. Biopolymers. 2006;82(1):38–58.

    Article  CAS  Google Scholar 

  25. Karapetian AT, Vardevanian PO, Tarzikian GA, Frank-Kamenetskii MD. Theory of helix–coil transition on DNA–ligand complexes: the effect to two types of interaction of ligand on the parameters of transition. J Biomol Struct Dyn. 1990;8(1):123–30.

    Article  CAS  Google Scholar 

  26. Bereznyak EG, Gladkovskaya NA, Khrebtova AS, Dukhopelnikov EV, Zinchenko AV. Peculiarities of DNA–proflavine binding under different concentration ratios. Biophysics. 2009;54(5):574–80.

    Article  Google Scholar 

  27. Gill SJ, Murphy KP, Robed CH. Partition function formalism for analyzing calorimetric experiments. J Chem Educ. 1990;67(11):928–31.

    Article  CAS  Google Scholar 

  28. Haynie DT. Biological thermodynamics. Cambridge: Cambridge University Press; 2008.

    Book  Google Scholar 

  29. Breslauer KJ, Freire E, Straume M. Calorimetry: a tool for DNA and ligand–DNA studies. Methods Enzymol. 1992;211:533–67.

    Article  CAS  Google Scholar 

  30. Marky LA, Breslauer KJ. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987;26(9):1601–20.

    Article  CAS  Google Scholar 

  31. Breslauer KJ. Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order–disorder transitions. Methods Mol Biol. 1994;26:347–72.

    Article  CAS  Google Scholar 

  32. Vallone PM, Benight AS. Thermodynamic, spectroscopic, and equilibrium binding studies of DNA sequence context effects in four 40 base pair deoxyoligonucleotides. Biochemistry. 2000;39:7835–46.

    Article  CAS  Google Scholar 

  33. Benight AS, Pancoska P, Owczarzy R, et al. Calculating sequence-dependent melting stability of duplex DNA oligomers and multiplex sequence analysis by graphs. Methods Enzymol. 2001;340:165–92.

    Article  CAS  Google Scholar 

  34. Riccelli PV, Vallone PM, Kashin I, Faldasz BD, Lane MJ, Benight AS. Thermodynamic, spectroscopic, and equilibrium binding studies of DNA sequence context effects in six 22-base pair deoxyoligonucleotides. Biochemistry. 1999;38(34):11197–208.

    Article  CAS  Google Scholar 

  35. Sturtevant JM. Biochemical applications of differential scanning calorimetry. Annu Rev Phys Chem. 1987;38:463–88.

    Article  CAS  Google Scholar 

  36. Duguid JG, Bloomfield VA, Benevides JM, Thomas GJ Jr. DNA melting investigated by differential scanning calorimetry and Raman spectroscopy. Biophys J. 1996;71(6):3350–60.

    Article  CAS  Google Scholar 

  37. Teif VB. Statistical–mechanical lattice models for protein–DNA binding in chromatin. J Phys Condens Matter. 2010;22(41):1–14.

    Article  Google Scholar 

  38. Hinz H-J, Schwarz FP. Measurement and analysis of results obtained on biological substances with DSC. Pure Appl Chem. 2001;73(4):745–59.

    Article  CAS  Google Scholar 

  39. Layton CJ, Hellinga HW. Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes. Biochemistry. 2010;49(51):10831–41.

    Article  CAS  Google Scholar 

  40. Kelley CT. Iterative methods for optimization. Raleigh: Society for Industrial and Applied Mathematics; 1999.

    Book  Google Scholar 

  41. Monaselidze JR, Kiladze MT, Gorgoshidze MZ, Khachidze DG, Bregadze VG, Lomidze EM, Lezhava TA. Microcalorimetric study of DNA–Cu(II)TOEPyP(4) porphyrin complex. J Therm Anal Calorim. 2012;108(1):127–31.

    Article  CAS  Google Scholar 

  42. Monaselidze J, Majagaladze G, Barbakadze Sh, Khachidze D, Gorgoshidze M, Kalandadze Y, Haroutiunian S, Dalyan Y, Vardanyan V. Microcalorimetric investigation of DNA, poly(dA)poly(dT) and poly[d(A-C)]poly[d(G-T)] melting in the presence of water soluble (meso tetra (4 N oxyethylpyridyl) porphyrin) and its Zn complex. J Biomol Struct Dynam. 2008;25(4):419–24.

    Article  CAS  Google Scholar 

  43. Peacocke AR. Chapter XIV. The interaction of acridines with nucleic acids. In: Acheson RM, editor. Chemistry of heterocyclic compounds: acridines, vol 9. 2nd ed. New York: Wiley; 1973. pp. 723–58.

    Chapter  Google Scholar 

  44. Baranovsky SF, Bolotin PA, Evstigneev MP, Chernyshev DN. Complexation of heterocyclic ligands with DNA in aqueous solution. J Appl Spectrosc. 2008;75(2):251–9.

    Article  Google Scholar 

  45. Ramstein J, Dourlent M, Leng M. Interaction between proflavine and deoxyribonucleic acid influence of DNA base composition. Biochem Biophys Res Commun. 1972;47(4):874–82.

    Article  CAS  Google Scholar 

  46. Li HJ, Crothers DM. Relaxation studies of the proflavine–DNA complex: the kinetics of an intercalation reaction. J Mol Biol. 1969;39(3):461–77.

    Article  CAS  Google Scholar 

  47. Tanaka S, Baba Y, Kagemoto A, Fujbhiro R. Thermodynamic studies on DNA–dye complexes. Makromol Chem. 1980;181:2175–81.

    Article  CAS  Google Scholar 

  48. Aslanoglu M. Electrochemical and spectroscopic studies of the interaction of proflavine with DNA. Anal Sci. 2006;22(3):439–43.

    Article  CAS  Google Scholar 

  49. McCall PJ, Bloomfield VA. Binding of proflavin to T2L bacteriophage and its DNA. Biopolymers. 1976;15(1):97–111.

    Article  CAS  Google Scholar 

  50. Cooper A. Microcalorimetry of heat capacity and volumetric changes in biomolecular interactions—the link to solvation? J Therm Anal Calorim. 2011;104(1):69–73.

    Article  CAS  Google Scholar 

  51. Kostjukov VV, Khomytova NM, Evstigneev MP. Partition of thermodynamic energies of drug–DNA complexation. Biopolymers. 2009;91(9):773–90.

    Article  CAS  Google Scholar 

  52. Sinha R, Hossain M, Kumar GS. Interaction of small molecules with double-stranded RNA: spectroscopic, viscometric, and calorimetric study of hoechst and proflavine binding to polyCG structures. DNA Cell Biol. 2009;28(4):209–19.

    Article  CAS  Google Scholar 

  53. Paul P, Hossain M, Yadav RC, Kumar GS. Biophysical studies on the base specificity and energetics of the DNA interaction of photoactive dye thionine: spectroscopic and calorimetric approach. Biophys Chem. 2010;148(1–3):93–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Dukhopelnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dukhopelnikov, E.V., Bereznyak, E.G., Khrebtova, A.S. et al. Determination of ligand to DNA binding parameters from two-dimensional DSC curves. J Therm Anal Calorim 111, 1817–1827 (2013). https://doi.org/10.1007/s10973-012-2561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2561-6

Keywords

Navigation