Skip to main content
Log in

Influence of wood mercerization on the crystallization of polypropylene in wood/PP composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mercerization process is very significant because the alkali treatment facilitates reactivity of lignocellulosic fillers, thus allowing better response to chemical modification. In the present study, the effect of mercerization of pine wood on the nucleation ability of polypropylene was investigated by means of differential scanning calorimetry. We discovered that for the composites with wood containing cellulose II, the decrease in the crystal conversion of the polymer matrix and increase in the half-time of crystallization values are significant. It can be concluded that the amount of cellulose II formed upon alkalization of lignocellulosic fillers determines their nucleation ability. To evaluate the transcrystalline effects caused by various woods, which were untreated or treated with sodium hydroxide, the polarized optical microscopy was also performed. The nucleation of polypropylene on the surface of wood was investigated by induction time measurement. It was found that surfaces of the unmodified wood generate epitaxial nucleation, whereas the mercerized wood generates nonepitaxial nucleation. The differences in the type of nucleation suggest that the effectiveness of formation of transcrystalline structures depends on the contribution of cellulose I and cellulose II. Moreover, the presence of epitaxy is not necessary for the appearance of transcrystalline structures. The results showed that the transcrystalline structures appeared in each system, even with wood containing significant contribution of cellulose II. The only difference noted was the change in the nucleation abilities of the wood surface. Results of this study imply the necessity of quantitative determination of the contributions of cellulose I and cellulose II, whose presence determine the type of nucleation and nucleation ability of the filler surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Renner K, Moczo J, Pukanszky B. Deformation and failure of PP composites reinforced with lignocellulosic fibers: effect of inherent strength of the particles. Compos Sci Technol. 2009;69:1653–9.

    Article  CAS  Google Scholar 

  2. Bledzki AK, Letman M, Viksne A, Rence L. A comparison of compounding process and wood type for wood fibre-PP composites. Composites. 2005;36:789–97.

    Article  Google Scholar 

  3. Nourbakhsh A, Ashori A. Wood plastic composites from agro-waste materials: analysis of mechanical properties. Bioresour Technol. 2010;101:2525–8.

    Article  CAS  Google Scholar 

  4. Kim JW, Harper DP, Taylor AM. Effect of wood species on the mechanical and thermal properties of wood-plastic composites. J Appl Polym Sci. 2009;112:1378–85.

    Article  CAS  Google Scholar 

  5. Oksman K, Mathew AP, Langstrom R, Nystrom B, Joseph K. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol. 2009;69:1847–53.

    Article  CAS  Google Scholar 

  6. Nunez AJ, Sturm PC, Kenny JM, Aranguren MI, Marcovich NE, Reboredo MM. Mechanical characterization of polypropylene-wood flour composites. J Appl Polym Sci. 2003;88:1420–8.

    Article  CAS  Google Scholar 

  7. Awal A, Ghosh SB, Sain M. Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim. 2010;99:695–701.

    Article  CAS  Google Scholar 

  8. Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL. Engineering and characterization of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A. 2002;33:1083–93.

    Article  Google Scholar 

  9. Danyadi L, Moczo J, Pukanszky B. Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos Part A. 2010;41:199–206.

    Article  Google Scholar 

  10. Lu JZ, Wu Q, McNabb HS. Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci. 2000;32:88–104.

    Google Scholar 

  11. Hill CAS. Wood modification: chemical, thermal and other processes. 1st ed. New York: Wiley; 2006.

  12. Rowell RM. Solid wood processing/chemical modification. In: Burley J, Evans J, Youngquist J, editors. Encyclopedia of forest sciences. Oxford: Elsevier; 2004.

  13. Wertz JL, Bedue O, Mercier JP. Cellulose science and technology. 1st ed. Boca Raton: Taylor and Francis Group; 2010.

    Google Scholar 

  14. Mwaikambo LY, Ansell M. Chemical modification of hemp, sisal, jute and kapok fibers by alkalization. J Appl Polym Sci. 2002;84:2222–34.

    Article  CAS  Google Scholar 

  15. Hon DNS. Chemical modification of lignocellulosic materials. 1st ed. New York: Marcel Dekker; 1996.

    Google Scholar 

  16. Pan MZ, Zhou DG, Deng J, Zhang SY. Preparation and properties of wheat straw fiber-polypropylene composites. I. Investigation of surface treatments on the wheat straw fiber. J Appl Polym Sci. 2009;114:3049–56.

    Article  CAS  Google Scholar 

  17. Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres. Progr Polym Sci. 1999;24:221–74.

    Article  CAS  Google Scholar 

  18. Wang HM, et al. Removing pectin and lignin during chemical processing of hemp for textile applications. Textile Res J. 2003;73:664–9.

    Article  CAS  Google Scholar 

  19. Weyenberg I, Truong TC, Vangrimde B, Verpoest I. Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A. 2006;37:1368–76.

    Article  Google Scholar 

  20. Borysiak S, Doczekalska B. Research into the mercerization process of beech wood using the WAXS method. Fibres Text East Eur. 2008;16:101–3.

    CAS  Google Scholar 

  21. Borysiak S, Garbarczyk J. Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerization. Fibres Text East Eur. 2003;11:104–6.

    Google Scholar 

  22. Kaith BS, Singha AS, Kumar S, Kalia S. Mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. Int J Polym Mater. 2008;57:54–72.

    Article  CAS  Google Scholar 

  23. Quan H, Li ZM, Yang MB, Huang R. On transcrystallinity in semi-crystalline polymer composites. Compos Sci Technol. 2005;65:999–1021.

    Article  CAS  Google Scholar 

  24. Varga J, Karger-Kocsis J. Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Polym Phys. 1996;34:657–70.

    Article  CAS  Google Scholar 

  25. Zafeiropoulos NE, Baillie CA, Matthews FL. A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos Part A. 2001;32:525–43.

    Article  Google Scholar 

  26. Son SJ, Lee YM, Im SS. Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulase. J Mater Sci. 2000;35:5767–78.

    Article  CAS  Google Scholar 

  27. Gray DG. Polypropylene transcrystallization at the surface of cellulose fibers. Polym Lett Ed. 1974;12:50915.

    Google Scholar 

  28. Borysiak S, Doczekalska B. The influence of chemical modification of wood on its nucleation ability in polypropylene composites. Polimery. 2009;54:41–8.

    Google Scholar 

  29. Quillin DT, Caulfield DF, Koutsky JA. Crystallinity in the polypropylene/cellulose system. I. Nucleation and crystalline morphology. J Appl Polym Sci. 1993;50:1187–94.

    Article  CAS  Google Scholar 

  30. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M. The thermal and crystallization studies of short sisal fibre reinforced polypropylene composites. Compos Part A. 2003;34:253–66.

    Article  Google Scholar 

  31. Lenes M, Gregersen QW. Effect of surface chemistry and topography of sulphite fibres on the transcrystallinity of polypropylene. Cellulose. 2006;13:345–55.

    Article  CAS  Google Scholar 

  32. Muchova M, Lednicky F. Investigation of heterogeneous nucleation by the induction time of crystallization: 2. Comparison of the theory and experimental measurement. Polymer. 1996;37:3037–43.

    Article  CAS  Google Scholar 

  33. Wittman JC, Lotz B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci. 1990;15:909–48.

    Article  Google Scholar 

  34. Wunderlich B. Macromolecular physics. 1st ed. New York: Academic Press; 1976.

  35. Muchova M, Lednicky F. Investigation of heterogeneous nucleation by the induction time of crystallization: 1. Theory of induction time. Polymer. 1996;37:3031–6.

    Article  CAS  Google Scholar 

  36. Felix JM, Gatenholm P. Effect of trancrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J Mater Sci. 1994;29:3043–9.

    Article  CAS  Google Scholar 

  37. Mucha M, Krolikowski Z. Application of DSC to study crystallization kinetics of polypropylene containing fillers. J Therm Anal Calorim. 2003;74:549–57.

    Article  CAS  Google Scholar 

  38. Hindeleh AM, Johnson DJ. The resolution of multipeak data in fibre science. J Phys Appl Phys. 1971;4:259–63.

    CAS  Google Scholar 

  39. Rabiej S. A comparison of two X-ray diffraction procedures for crystallinity determination. Eur Polym J. 1991;27:947–54.

    Article  CAS  Google Scholar 

  40. Lee SY, Chun J, Doh GH, Kang IA. Influence of chemical modification and filler loading on fundamental properties of bamboo fibers reinforced polypropylene composites. J Compos Mater. 2009;43:1639–48.

    Article  CAS  Google Scholar 

  41. Ishikawa A, Okano T, Sugiyama J. Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, III and IV. Polymer. 1997;38:463–8.

    Article  CAS  Google Scholar 

  42. Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH. Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean J Chem Eng. 2010;27:651–7.

    Article  CAS  Google Scholar 

  43. Dinand E, Vignon M, Chanzy H, Heux L. Mercerization of primary wall cellulose and its implication of cellulose I → cellulose II. Cellulose. 2002;9:7–18.

    Article  CAS  Google Scholar 

  44. Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci. 2001;26:1341–417.

    Article  CAS  Google Scholar 

  45. Borysiak S, Doczekalska B. Influence of chemical modification of wood on the crystallisation of polypropylene. Holz Roh Werkst. 2006;64:451–4.

    Article  CAS  Google Scholar 

  46. Borysiak S. Determination of nucleation ability of wood for non-isothermal crystallisation of polypropylene. J Therm Anal Calorim. 2007;88:455–62.

    Article  CAS  Google Scholar 

  47. Borysiak S. The supermolecular structure of polypropylene/wood composites. I) The influence of processing parameters and chemical treatment of filler. Polym Bull. 2010;64:275–90.

    Article  CAS  Google Scholar 

  48. Bouza R, Marco C, Ellis G, Martin Z, Gomez MA, Barral L. Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008;94:119–27.

    Article  CAS  Google Scholar 

  49. Ng ZS, Simon LC, Elkamel A. Renewable agricultural fibers as reinforcing fillers in plastics. Prediction of thermal properties. J Therm Anal Calorim. 2009;96:85–90.

    Article  CAS  Google Scholar 

  50. Bledzki AK, Reihmane S, Gassan J. Thermoplastics reinforced with wood filler: a literature review. J Polym Plast Technol Eng. 1998;37:451–68.

    Article  CAS  Google Scholar 

  51. Joseph PV, Kuruvilla J, Sabu T. Effect of processing variables on the mechanical properties of sisal fiber reinforced polypropylene composite. Compos Sci Technol. 1999;59:1625–40.

    Article  CAS  Google Scholar 

  52. Marconich NE, Aranguren MI, Reboredo MM. Modified woodflour as thermoset fillers. Part I. Effect of the chemical modification and percentage of filler on the mechanical properties. Polymer. 2001;42:815–25.

    Article  Google Scholar 

  53. Albano C, Ichazo M, Gonzalez J, Delgado M, Poleo R. Effects of filler treatments on the mechanical and morphological behavior PP + wood flour and PP + sisal fiber. Mat Res Innovat. 2001;4:284–93.

    Article  CAS  Google Scholar 

  54. Pimenta MTB, Carvalho AJF, Vilaseca F, Gironès J, Lopez JP, Mutjé P, Curvelo AAS. Soda treated Sisal/polypropylene composites. J Polym Environ. 2008;16:35–9.

    Article  CAS  Google Scholar 

  55. Ichazo MN, Albano C, Gonzalez J, Perera R, Candal MV. Polypropylene/wood flour composites: treatments and properties. Compos Struct. 2001;54:207–14.

    Article  Google Scholar 

  56. Raj RG, Kokta BV, Groluleau G, Daneault C. The influence of coupling agents on mechanical properties of composites containing cellulosic fillers. Polym Plat Technol Eng. 1990;29:339–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by University Grant of Poznan University of Technology 32-171/12-DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Borysiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borysiak, S. Influence of wood mercerization on the crystallization of polypropylene in wood/PP composites. J Therm Anal Calorim 109, 595–603 (2012). https://doi.org/10.1007/s10973-012-2221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2221-x

Keywords

Navigation