Skip to main content
Log in

Thermogravimetric analysis of walnut shell as pyrolysis feedstock

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal degradation behavior and kinetics of a biomass waste material, namely walnut shell, were investigated by using a thermogravimetric analyzer. The desired final temperature of 800 °C was achieved at three different heating rates (2, 10, and 15 °C min−1) under nitrogen flow (50 mL min−1). The TG and DTG curves exhibited three distinct zones that can mainly be attributed to removal of water, decomposition of hemicellulose + cellulose, and decomposition of lignin, respectively. The kinetic parameters (activation energy, pre-exponential factor, and reaction order) of active pyrolysis zone were determined by applying Arrhenius, Coats–Redfern, and Horowitz–Metzger methods to TG results. The values of activation energies were found to be between 45.6 and 78.4 kJ mol−1. There was a great agreement between the results of Arrhenius and Coats–Redfern methods while Horowitz–Metzger method yielded relatively higher results. The existence of kinetic compensation effect was evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IEA. World energy outlook. Paris: OECD/IEA; 2008.

    Google Scholar 

  2. Bassam NE. Handbook of energy crops: a complete reference to species, development and applications. UK: Earthscan; 2010.

    Google Scholar 

  3. Karaca F, Bolat E. Coprocessing of a Turkish lignite with a cellulosic waste material 1. The effect of coprocessing on liquefaction yields at different reaction temperatures. Fuel Process Technol. 2000;64:47–55.

    Article  CAS  Google Scholar 

  4. Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK. Characterization of Canadian biomass for alternative renewable fuel. Renew Energy. 2010;35:1624–31.

    Article  CAS  Google Scholar 

  5. Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renew Sustain Energy Rev. 2000;4:1–73.

    Article  CAS  Google Scholar 

  6. Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88:87–97.

    Article  CAS  Google Scholar 

  7. Bahng M-K, Mukarakate C, Robichaud DJ, Nimlos MR. Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta. 2009;651:117–38.

    Article  CAS  Google Scholar 

  8. Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag. 2004;45:651–71.

    Article  CAS  Google Scholar 

  9. García-Ibañez P, Sánchez M, Cabanillas A. Thermogravimetric analysis of olive-oil residue in air atmosphere. Fuel Process Technol. 2006;87(2):103–7.

    Article  Google Scholar 

  10. Sharma A, Rao TR. Kinetics of pyrolysis of rice husk. Bioresour Technol. 1999;67:53–9.

    Article  CAS  Google Scholar 

  11. Alvarez VA, Vázquez A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab. 2004;84:13–21.

    Article  CAS  Google Scholar 

  12. Janković B, Adnadević B, Jovanović J. Non-isothermal kinetics of dehydration of equilibrium swollen poly(acrylic acid) hydrogel. J Therm Anal Calorim. 2005;82:7–13.

    Article  Google Scholar 

  13. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  14. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol. 2010;101:4584–92.

    Article  CAS  Google Scholar 

  15. Blasi CD. Modeling chemical and physical processes of wood and biomass pyrolysis. Progr Energy Combust. 2008;34:47–90.

    Article  Google Scholar 

  16. Wu Y-M, Zhao Z-L, Li H-B, He F. Low temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol. 2009;37(4):427–32.

    Article  CAS  Google Scholar 

  17. Zapata B, Balmesada J, Fragoso-Israel E, Torres-García E. Thermo-kinetics study of orange peel in air. J Therm Anal Calorim. 2009;98:309–15.

    Article  CAS  Google Scholar 

  18. Souza BS, Moreira APD, Teixeira AMRF. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J Therm Anal Calorim. 2009;97:637–42.

    Article  CAS  Google Scholar 

  19. Aboulkas A, El Harfi K, El Bouadili A. Pyrolysis of olive residue/low density polyethylene mixture: part I thermogravimetric kinetics. J Fuel Chem Technol. 2008;36(6):672–8.

    Article  Google Scholar 

  20. Lapuerta M, Hernández JJ, Rodríguez J. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy. 2004;27:385–91.

    Article  CAS  Google Scholar 

  21. Ebrahimi-Kahrizsangi R, Abbasi MH. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China. 2008;18:217–21.

    Article  CAS  Google Scholar 

  22. Aly AAM, Osman AH, El-Mottaleb MA, Gouda GAH. Thermal stability and kinetic studies of cobalt (II), nickel (II), copper (II), cadmium (II) and mercury (II) complexes derived from n-salicylidene Schiff bases. J Chil Chem Soc. 2009;54(4):349–53.

    Article  CAS  Google Scholar 

  23. L’vov BV. Thermal decomposition of solids and melts: new thermochemical approach to the mechanism, kinetics and methodology. Dordrecht, The Netherlands: Springer; 2007.

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Işık Yavuz for her valuable help during the analyses. The author would also like to thank Dr. Dilek Duranoğlu and Prof. Dr. Esen Bolat for their continuous support during the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korkut Açıkalın.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Açıkalın, K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J Therm Anal Calorim 105, 145–150 (2011). https://doi.org/10.1007/s10973-010-1267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1267-x

Keywords

Navigation