Skip to main content
Log in

In-situ coating N-doped carbon on Co3O4 aerogel powders for remarkable supercapacitive properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol-gel method combined with the freeze-drying method was applied to prepare Co3O4 aerogel powders (CAP). Subsequently, a nitrogen-doped carbon layer was encapsulated on the surface of the aerogel powder by carbonized polydopamine. Various characterizations including SEM, TEM, XRD, Raman spectrum, and N2 adsorption-desorption confirmed the successful synthesis of nitrogen-doped carbon-coated Co3O4 aerogel powders (NCCAP) with a high specific surface area and mesoporous structure. The NCCAP electrode exhibits a higher specific capacity up to 753.6 C g−1 and N-doped coating provides additional double electric layer capacitance in a low potential range. More importantly, the capacity of the NCCAP electrode decreases by only 6% after 20,000 GCD cycles and the capacity retention at 50 A g−1 remains at 57.3% of the initial value at 1 A g−1, demonstrating electrochemical stability and high rate capability. An assembled asymmetric supercapacitor based on NCCAP electrode delivers a high energy density of 38.6 Wh kg−1 at 1 A g−1 and excellent cyclic stability with 93.62% retention of initial capacity after 20000 cycles. The superior performance is attributed not only to the porous structure and large specific surface area of the aerogel powders but also to the structural stability of the electrode material due to the N-doped carbon coating, which is promising for supercapacitor applications.

Graphical abstract

Highlights

  • Co3O4 aerogel powders with N-doped carbon coating were prepared by a sol–gel route.

  • The sample has a mesoporous structure with a specific surface area of 145 m2 g−1.

  • The prepared electrode exhibits a high specific capacity of 753.6 C g−1.

  • The electrode shows remarkable properties in long-term GCD cycles and rate capability.

  • An assembled ASC achieves a maximum energy density of 38.94 Wh kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhojane P (2022) Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. J. Energy Storage 45:103654. https://doi.org/10.1016/j.est.2021.103654

    Article  Google Scholar 

  2. Chen Y, Wang N, Tang X, Pillai SC, Hu W (2022) High performance supercapacitors using selenium partially reduced Co3O4 on carbon cloth electrode with 3D interconnected architecture nanowires. Appl Surf Sci 605:154785. https://doi.org/10.1016/j.apsusc.2022.154785

    Article  CAS  Google Scholar 

  3. Park HW, Roh KC (2023) Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review. J. Power Sources 557:232558. https://doi.org/10.1016/j.jpowsour.2022.232558

    Article  CAS  Google Scholar 

  4. Z Zhang, S Sun, Z Xu, S Yin, Multicomponent hybridization transition metal oxide electrode enriched with oxygen vacancy for ultralong-life supercapacitor, Small Online. https://doi.org/10.1002/smll.202302479.

  5. Chen Y, Zhu J, Wang N, Cheng H, Tang X, Komarneni S, Hu W (2021) Significantly improved conductivity of spinel Co3O4 porous nanowires partially substituted by Sn in tetrahedral sites for high-performance quasi-solid-state supercapacitors. J. Mater Chem A 9:7005–7017. https://doi.org/10.1039/D0TA12095B

    Article  CAS  Google Scholar 

  6. Hu X, Wang Y, Wu Q, Li J (2022) Review of cobalt-based nanocomposites as electrode for supercapacitor application. Ionics 28:989–1015. https://doi.org/10.1007/s11581-021-04319-z

    Article  CAS  Google Scholar 

  7. Xiang M, He L, Wang N, Chen J, Hu W (2023) Hydrothermally etching commercial carbon cloth to form a porous structure for flexible zinc-ion hybrid supercapacitors. Appl Surf Sci. 613:156093. https://doi.org/10.1016/j.apsusc.2022.156093

    Article  CAS  Google Scholar 

  8. Girirajan M, Alagarsamy NB, Ramachandran K, Manimuthu RP, Pazhanivel D, Muthusamy KK, Sakkarapani S (2022) Two dimensional layered bismuthene nanosheets with ultra-fast charge transfer kinetics as a superior electrode material for high performance asymmetric supercapacitor. Electrochim Acta 426:140838. https://doi.org/10.1016/j.electacta.2022.140838

    Article  CAS  Google Scholar 

  9. Wu G, Ma Z, Wu X, Zhu X, Man Z, Lu W, Xu J (2022) Interfacial polymetallic oxides and hierarchical porous core–shell fibres for high energy-density electrochemical supercapacitors. Angew Chem Int Edit 61:e202203765. https://doi.org/10.1002/anie.202203765

    Article  CAS  Google Scholar 

  10. Duan Z, Shi XR, Sun C, Lin W, Huang S, Zhang X, Huang M, Yang Z, Xu S (2022) Interface engineered hollow Co3O4@CoNi2S4 nanostructure for high efficiency supercapacitor and hydrogen evolution. Electrochim Acta 412:140139. https://doi.org/10.1016/j.electacta.2022.140139

    Article  CAS  Google Scholar 

  11. Soni RU, Edlabadkar VA, Rewatkar PM, Doulah ABMS, Leventis N, Sotiriou-Leventis C (2022) Low-temperature catalytic synthesis of graphite aerogels from polyacrylonitrile-crosslinked iron oxide and cobalt oxide xerogel powders. Carbon 193:107–127. https://doi.org/10.1016/j.carbon.2022.02.080

    Article  CAS  Google Scholar 

  12. Hu JZ, Liu WJ, Zheng JH, Li GC, Bu YF, Qiao F, Lian JB, Zhao Y (2023) Coral-like cobalt selenide/carbon nanosheet arrays attached on carbon nanofibers for high-rate sodium-ion storage. Rare Metals 42:916–928. https://doi.org/10.1007/s12598-022-02146-3

    Article  CAS  Google Scholar 

  13. Zhang Y, Hu Y, Wang Z, Lin T, Zhu X, Luo B, Hu H, Xing W, Yan Z, Wang L (2020) Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv Funct Mater 30:2004172. https://doi.org/10.1002/adfm.202004172

    Article  CAS  Google Scholar 

  14. Zhang Y, Ding P, Wu W, Kimura H, Shen Y, Wu D, Xie X, Hou C, Sun X, Yang X, Du W (2023) Facile synthesis of reduced graphene oxide@Co3O4 composites derived from assisted liquid-phase plasma electrolysis for high-performance hybrid supercapacitors. Appl Surf Sci 609:155188. https://doi.org/10.1016/j.apsusc.2022.155188

    Article  CAS  Google Scholar 

  15. Ghazvini AAS, Taheri-Nassaj E, Raissi B, Riahifar R, Yaghmaee MS, Shaker M (2021) Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode. Mater Lett 285:129195. https://doi.org/10.1016/j.matlet.2020.129195

    Article  CAS  Google Scholar 

  16. Li J, Jiang W, Wang D (2023) Synthesis of Co3O4@CNTs with oxygen vacancies on nickel foam for improved performance of asymmetric supercapacitor electrode. Colloid Surfaces A 658:130750. https://doi.org/10.1016/j.colsurfa.2022.130750

    Article  CAS  Google Scholar 

  17. Zhang X, Ma G, Shui L, Zhou G, Wang X (2021) Direct growth of oxygen vacancy-enriched Co3O4 nanosheets on carbon nanotubes for high-performance supercapacitors. ACS Appl Mater Interfaces 13:4419–4428. https://doi.org/10.1021/acsami.0c21330

    Article  CAS  Google Scholar 

  18. Ji Z, Liu K, Chen L, Nie Y, Pasang D, Yu Q, Shen X, Xu K, Premlatha S (2022) Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors. J Colloid Interf Sci 609:503–512. https://doi.org/10.1016/j.jcis.2021.11.055

    Article  CAS  Google Scholar 

  19. Umar A, Raut SD, Ibrahim AA, Algadi H, Albargi H, Alsaiari MA, Akhtar MS, Qamar M, Baskoutas S (2021) Perforated Co3O4 nanosheets as high-performing supercapacitor material. Electrochim Acta 389:138661. https://doi.org/10.1016/j.electacta.2021.138661

    Article  CAS  Google Scholar 

  20. Teng K, An Q, Chen Y, Zhang Y, Zhao Y (2021) Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses. ACS Biomater Sci Eng 7:1302–1337. https://doi.org/10.1021/acsbiomaterials.1c00116

    Article  CAS  Google Scholar 

  21. Ball V, Frari DD, Toniazzo V, Ruch D (2012) Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. J Colloid Interf Sci 386:366–372. https://doi.org/10.1016/j.jcis.2012.07.030

    Article  CAS  Google Scholar 

  22. Xu D, Yang Y, Lyu L, Ouyang A, Liu W, Wang Z, Wu L, Yang F, Liu J, Wang F (2021) One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chem Eng J 410:128295. https://doi.org/10.1016/j.cej.2020.128295

    Article  CAS  Google Scholar 

  23. Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun J, Matyjaszewski K, Antonietti M, Yuan J (2020) Polymer-derived heteroatom-doped porous carbon materials. Chem Rev 120:9363–9419. https://doi.org/10.1021/acs.chemrev.0c00080

    Article  CAS  Google Scholar 

  24. Zhan W, Yuan Y, Sun L, Yuan Y, Han X, Zhao Y (2019) Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 15:1901024. https://doi.org/10.1002/smll.201901024

    Article  CAS  Google Scholar 

  25. Zhu M, Tu C, Li X, Luo Q, Li S (2022) In situ formation of MnO@N-doped carbon for asymmetric supercapacitor with enhanced cycling performance. Mater Chem Front 6:491–502. https://doi.org/10.1039/D1QM01404H

    Article  CAS  Google Scholar 

  26. Kim KH, Jeong SJ, Koo BR, Ahn HJ (2021) Surface amending effect of N-doped carbon-embedded NiO films for multirole electrochromic energy-storage devices. Appl Surf Sci 537:147902. https://doi.org/10.1016/j.apsusc.2020.147902

    Article  CAS  Google Scholar 

  27. Qiu T, Yang L, Xiang Y, Ye Y, Zou G, Hou H, Ji X (2021) Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon. Small Methods 5:2100188. https://doi.org/10.1002/smtd.202100188

    Article  CAS  Google Scholar 

  28. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66:1739–1758. https://doi.org/10.1351/pac199466081739

    Article  CAS  Google Scholar 

  29. Kiey SAA, Abdelhamid HN (2022) Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as an electrode materials for supercapacitor. J Energy Storage 55:105449. https://doi.org/10.1016/j.est.2022.105449

    Article  Google Scholar 

  30. Ma Q, Cui F, Zhang J, Qi X, Cui T (2022) Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor. Appl Surf Sci 578:152001. https://doi.org/10.1016/j.apsusc.2021.152001

    Article  CAS  Google Scholar 

  31. Ramesh S, Karuppasamy K, Sivasamy A, Kim HS, Yadav HM, Kim HS (2021) Core shell nanostructured of Co3O4@RuO2 assembled on nitrogen-doped graphene sheets electrode for an efficient supercapacitor application. J Alloy Compd 877:160297. https://doi.org/10.1016/j.jallcom.2021.160297

    Article  CAS  Google Scholar 

  32. Aslam S, Ramay SM, Mahmood A, Mustafa GM, Zawar S, Atiq S (2023) Electrochemical performance of transition metal doped Co3O4 as electrode material for supercapacitor applications. J Sol-Gel Sci Techn 105:360–369. https://doi.org/10.1007/s10971-022-06008-3

    Article  CAS  Google Scholar 

  33. Zallouz S, Réty B, Vidal L, Meins JML, Ghimbeu CM (2021) Co3O4 nanoparticles embedded in mesoporous carbon for supercapacitor applications. ACS Appl Nano Mater 4:5022–5037. https://doi.org/10.1021/acsanm.1c00522

    Article  CAS  Google Scholar 

  34. Rehman MN, Munawar T, Nadeem MS, Mukhtar F, Maqbool A, Riaz M, Manzoor S, Ashiq MN, Iqbal F (2021) Facile synthesis and characterization of conducting polymer-metal oxide based core-shell PANI–Pr2O–NiO–Co3O4 nanocomposite: As electrode material for supercapacitor. Ceram Int 47:18497–18509. https://doi.org/10.1016/j.ceramint.2021.03.173

    Article  CAS  Google Scholar 

  35. Ankinapalli OR, Krishna BNV, Hua Y, Yu JS (2022) Co2Mo3O8/Co3O4 micro-flowers architectured material for high-performance supercapacitor electrodes. J Alloy Compd 928:167063. https://doi.org/10.1016/j.jallcom.2022.167063

    Article  CAS  Google Scholar 

  36. Ali F, Khalid NR, Nabi G, Ul-Hamid A, Ikram M (2021) Hydrothermal synthesis of cerium-doped Co3O4 nanoflakes as electrode for supercapacitor application. Int J Energ Res 45:1999–2010. https://doi.org/10.1002/er.5893

    Article  CAS  Google Scholar 

  37. He Y, Hu F, Liu D, He X, Li Q, Sui Y, Qi J, Wang Y (2023) Cattail spike-like Co(OH)F@Co3O4 nanoarrays for high-performance supercapacitors. J Energy Storage 58:106377. https://doi.org/10.1016/j.est.2022.106377

    Article  Google Scholar 

  38. Cheng L, Zhang Q, Xu M, Zhai Q, Zhang C (2021) Two-for-one strategy: Three-dimensional porous Fe-doped Co3O4 cathode and N-doped carbon anode derived from a single bimetallic metal-organic framework for enhanced hybrid supercapacitor. J Colloid Interf Sci 583:299–309. https://doi.org/10.1016/j.jcis.2020.09.040

    Article  CAS  Google Scholar 

  39. Lu Y, Deng B, Liu Y, Wang J, Tu Z, Lu J (2021) Nanostructured Co3O4 for achieving high-performance supercapacitor. Mater Lett 285:129101. https://doi.org/10.1016/j.matlet.2020.129101

    Article  CAS  Google Scholar 

  40. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173. https://doi.org/10.1039/C5TA08620E

    Article  CAS  Google Scholar 

  41. Wang N, Song H, Ren H, Chen J, Yao M, Huang W, Hu W, Komarneni S (2019) Partly nitrogenized nickel oxide hollow spheres with multiple compositions for remarkable electrochemical performance. Chem Eng J 358:531–539. https://doi.org/10.1016/j.cej.2018.10.079

    Article  CAS  Google Scholar 

  42. Tao Y, Wu Y, Chen H, Chen W, Wang J, Tong Y, Pei G, Shen Z, Guan C (2020) Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor. Chem Eng J 396:125364. https://doi.org/10.1016/j.cej.2020.125364

    Article  CAS  Google Scholar 

  43. Hosseinzadeh B, Nagar B, Benages-Vilau R, Gomez-Romero P, Kazemi SH (2021) MOF-derived conformal cobalt oxide/C composite material as high-performance electrode in hybrid supercapacitors. Electrochim Acta 389:138657. https://doi.org/10.1016/j.electacta.2021.138657

    Article  CAS  Google Scholar 

  44. Xiang F, Zhou X, Yue X, Hu Q, Zheng Q, Lin D (2021) An oxygen-deficient cobalt-manganese oxide nanowire doped with P designed for high performance asymmetric supercapacitor. Electrochim Acta 379:138178. https://doi.org/10.1016/j.electacta.2021.138178

    Article  CAS  Google Scholar 

  45. Gayathri S, Arunkumar P, Saha D, Han JH (2021) Composition engineering of ZIF-derived cobalt phosphide/cobalt monoxide heterostructures for high-performance asymmetric supercapacitors. J Colloid Interf Sci 588:557–570. https://doi.org/10.1016/j.jcis.2020.11.129

    Article  CAS  Google Scholar 

  46. Azadfalah M, Sedghi A, Hosseini H, Kashani H (2021) Cobalt based metal organic framework/graphene nanocomposite as high performance battery-type electrode materials for asymmetric Supercapacitors. J Energy Storage 33:101925. https://doi.org/10.1016/j.est.2020.101925

    Article  Google Scholar 

  47. Zhang W, Wang Y, Guo X, Liu Y, Zheng Y, Zhang M, Li R, Peng Z, Xie H, Zhao Y (2021) Graphene-carbon nanotube @ cobalt derivatives from ZIF-67 for all-solid-state asymmetric supercapacitor. Appl Surf Sci 568:150929. https://doi.org/10.1016/j.apsusc.2021.150929

    Article  CAS  Google Scholar 

  48. Parale VG, Kim T, Patil AM, Phadtare VD, Choi H, Dhavale RP, Kim Y, Jun SC, Park HH (2022) Construction of hierarchical nickel cobalt sulfide@manganese oxide nanoarrays@nanosheets core-shell electrodes for high-performance electrochemical asymmetric supercapacitor. Int J Energ Res 46:5250–5259. https://doi.org/10.1002/er.7413

    Article  CAS  Google Scholar 

  49. Mangate NV, Giripunje SM, Kondawar SB (2023) Electrospun 1D cobalt pyrophosphate porous nanofibers: Redox-active electrode material for asymmetric supercapacitor. J Energy Storage 67:107560. https://doi.org/10.1016/j.est.2023.107560

    Article  Google Scholar 

Download references

Author contributions

CL and WH wrote the main manuscript text. CL, QS and NW prepared all figures. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencheng Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Su, Q., Wang, N. et al. In-situ coating N-doped carbon on Co3O4 aerogel powders for remarkable supercapacitive properties. J Sol-Gel Sci Technol 108, 889–899 (2023). https://doi.org/10.1007/s10971-023-06239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06239-y

Keywords

Navigation