Skip to main content
Log in

Crystalline precursor derived from Li3PS4 and ethylenediamine for ionic conductors

  • Invited Paper: Sol–gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Liquid-phase syntheses of sulfide materials are attractive for the mass production of solid electrolytes for all-solid-state batteries. In liquid-phase synthesis, the precursor of the solid electrolyte is obtained. The precursors are important for producing electrolytes of the same quality because they decompose into electrolytes by heat treatment. However, only a few studies have focused on the formation mechanism and structure of precursors. This study proposes a formation mechanism for Li3PS4 during liquid-phase synthesis using ethylenediamine (EDA) as a solvent and clarifies the crystal structure of Li3PS4·NH2CH2CH2NH2 (Li3PS4·EDA). Raman spectroscopy and nuclear magnetic resonance revealed that intermediate P2S62− units were generated in the EDA solution. Crystal structure analysis of Li3PS4·EDA showed that the terminal nitrogen atom of EDA coordinates with two lithium atoms. Ionic conductivity of Li3PS4·EDA was 2.8 × 10−9 S cm−1 at 25 °C. The analysis of precursors of solid electrolytes provides insight into the behavior of solvent molecules as ligands in the synthesis of sulfide electrolytes.

Graphical abstract

Highlights

  • β-Li3PS4 is prepared using a precursor obtained from Li3PS4 and ethylenediamine.

  • Intermediate P2S62− units are generated in the ethylenediamine solution.

  • Tetrahedra of PS4 and LiS4 form a framework in the precursor.

  • Ethylenediamine molecules coordinate to two lithium cations in the precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1:16141. https://doi.org/10.1038/nenergy.2016.141

    Article  Google Scholar 

  2. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103. https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  3. Sakuda A, Hayashi A, Tatsumisago M (2013) Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep 3:2–6. https://doi.org/10.1038/srep02261

    Article  Google Scholar 

  4. Kimura T, Inoue A, Nagao K et al. (2022) Characteristics of a Li3BS3 thioborate glass electrolyte obtained via a mechanochemical process. ACS Appl Energy Mater 5:1421–1426. https://doi.org/10.1021/acsaem.1c02452

  5. Hayashi A, Hama S, Morimoto H et al. (2001) High lithium ion conductivity of glass-ceramics derived from mechanically milled glassy powders. Chem Lett 30:872–873. https://doi.org/10.1246/cl.2001.872

    Article  Google Scholar 

  6. Hayashi A, Hama S, Morimoto H et al. (2001) Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc 84:477–479. https://doi.org/10.1111/j.1151-2916.2001.tb00685.x

  7. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) New, highly ion-conductive crystals precipitated from Li 2S-P2S5 glasses. Adv Mater 17:918–921. https://doi.org/10.1002/adma.200401286

  8. Tatsumisago M (2002) New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S-P2S5 glasses. Solid State Ion 154–155:635–640. https://doi.org/10.1016/S0167-2738(02)00509-X

    Article  Google Scholar 

  9. Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses. Electrochem Commun 5:111–114. https://doi.org/10.1016/S1388-2481(02)00555-6

  10. Kanno R, Hata T, Kawamoto Y, Irie M (2000) Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system. Solid State Ion 130:97–104. https://doi.org/10.1016/S0167-2738(00)00277-0

    Article  CAS  Google Scholar 

  11. Murayama M, Kanno R, Irie M (2002) Synthesis of new lithium ionic conductor thio-LISICON – lithium silicon sulfides system. J Solid State Chem 168:140–148. https://doi.org/10.1006/jssc.2002.9701

    Article  CAS  Google Scholar 

  12. Murayama M, Kanno R, Kawamoto Y, Kamiyama T (2002) Structure of the thio-LISICON, Li4GeS4. Solid State Ion 154–155:789–794. https://doi.org/10.1016/S0167-2738(02)00492-7

  13. Kanno R, Murayama M (2001) Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J Electrochem Soc 148:A742. https://doi.org/10.1149/1.1379028

    Article  CAS  Google Scholar 

  14. Murayama M, Sonoyama N, Yamada A, Kanno R (2004) Material design of new lithium ionic conductor, thio-LISICON, in the Li2S-P2S5 system. Solid State Ion 170:173–180. https://doi.org/10.1016/j.ssi.2004.02.025

    Article  CAS  Google Scholar 

  15. Homma K, Yonemura M, Kobayashi T et al. (2011) Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion 182:53–58. https://doi.org/10.1016/j.ssi.2010.10.001

  16. Kimura T, Kato A, Hotehama C et al. (2019) Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ion 333:45–49. https://doi.org/10.1016/j.ssi.2019.01.017

    Article  CAS  Google Scholar 

  17. Kimura T, Hotehama C, Sakuda A et al. (2021) Structures and conductivities of stable and metastable Li5GaS4 solid electrolytes. RSC Adv 11:25211–25216. https://doi.org/10.1039/D1RA03194E

    Article  CAS  Google Scholar 

  18. Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys Status Solidi A 208:1804–1807. https://doi.org/10.1002/pssa.201001117

    Article  CAS  Google Scholar 

  19. Kong ST, Gün O, Koch B et al. (2010) Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy. Chemistry 16:5138–5147. https://doi.org/10.1002/chem.200903023

    Article  CAS  Google Scholar 

  20. Rayavarapu PR, Sharma N, Peterson VK, Adams S (2012) Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J Solid State Electrochem 16:1807–1813. https://doi.org/10.1007/s10008-011-1572-8

  21. Kraft MA, Ohno S, Zinkevich T et al. (2018) Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries. J Am Chem Soc 140:16330–16339. https://doi.org/10.1021/jacs.8b10282

  22. Kamaya N, Homma K, Yamakawa Y et al. (2011) A lithium superionic conductor. Nat Mater 10:682–686. https://doi.org/10.1038/nmat3066

    Article  CAS  Google Scholar 

  23. Kato Y, Hori S, Saito T et al. (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030. https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  24. Miura A, Rosero-Navarro NC, Sakuda A et al. (2019) Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat Rev Chem 3:189–198. https://doi.org/10.1038/s41570-019-0078-2

    Article  CAS  Google Scholar 

  25. Liu Z, Fu W, Payzant EA et al. (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135:975–978. https://doi.org/10.1021/ja3110895

    Article  CAS  Google Scholar 

  26. Wang H, Hood ZD, Xia Y, Liang C (2016) Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J Mater Chem A 4:8091–8096. https://doi.org/10.1039/C6TA02294D

  27. Phuc NHH, Totani M, Morikawa K et al. (2016) Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ion 288:240–243. https://doi.org/10.1016/j.ssi.2015.11.032

  28. Phuc NHH, Morikawa K, Mitsuhiro T et al. (2017) Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics 23:2061–2067. https://doi.org/10.1007/s11581-017-2035-8

  29. Choi S, Lee S, Park J et al. (2018) Facile synthesis of Li2 S-P2 S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST). Appl Surf Sci 444:10–14. https://doi.org/10.1016/j.apsusc.2018.02.270

  30. Phuc NHH, Morikawa K, Totani M et al. (2016) Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking. Solid State Ion 285:2–5. https://doi.org/10.1016/j.ssi.2015.11.019

    Article  CAS  Google Scholar 

  31. Teragawa S, Aso K, Tadanaga K et al. (2014) Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. J Mater Chem A 2:5095–5099. https://doi.org/10.1039/c3ta15090a

    Article  CAS  Google Scholar 

  32. Ito A, Kimura T, Sakuda A et al. (2022) Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine. J Sol Gel Sci Technol 101:2–7. https://doi.org/10.1007/s10971-021-05524-y

    Article  CAS  Google Scholar 

  33. Calpa M, Rosero-Navarro NC, Miura A et al. (2020) Formation mechanism of thiophosphate anions in the liquid-phase synthesis of sulfide solid electrolytes using polar aprotic solvents. Chem Mater 32:9627–9632. https://doi.org/10.1021/acs.chemmater.0c03198

    Article  CAS  Google Scholar 

  34. Delnick FM, Yang G, Self EC et al. (2020) Investigation of complex intermediates in solvent-mediated synthesis of thiophosphate solid-state electrolytes. J Phys Chem C 124:27396–27402. https://doi.org/10.1021/acs.jpcc.0c08761

    Article  CAS  Google Scholar 

  35. Matsuda R, Hirahara E, Phuc NHH et al. (2018) Preparation of LiNi1/3Mn1/3Co1/3O2/Li3PS4 cathode composite particles using a new liquid-phase process and application to all-solid-state lithium batteries. J Ceram Soc Jpn 126:826–831. https://doi.org/10.2109/jcersj2.18080

    Article  CAS  Google Scholar 

  36. Ito S, Nakakita M, Aihara Y et al. (2014) A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J Power Sources 271:342–345. https://doi.org/10.1016/j.jpowsour.2014.08.024

    Article  CAS  Google Scholar 

  37. Wang Y, Lu D, Bowden M et al. (2018) Mechanism of formation of Li7P3S11 solid electrolytes through liquid phase synthesis. Chem Mater 30:990–997. https://doi.org/10.1021/acs.chemmater.7b04842

    Article  CAS  Google Scholar 

  38. Wang Z, Jiang Y, Wu J et al. (2020) Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte. Chem Eng J 393:124706. https://doi.org/10.1016/j.cej.2020.124706

    Article  CAS  Google Scholar 

  39. Calpa M, Nakajima H, Mori S et al. (2021) Formation mechanism of β-Li3PS4 through decomposition of complexes. Inorg Chem 60:6964–6970. https://doi.org/10.1021/acs.inorgchem.1c00294

    Article  CAS  Google Scholar 

  40. Sedlmaier SJ, Indris S, Dietrich C et al. (2017) Li4PS4I:A Li+ superionic conductor synthesized by a solvent-based soft chemistry approach. Chem Mater 29:1830–1835. https://doi.org/10.1021/acs.chemmater.7b00013

    Article  CAS  Google Scholar 

  41. Ozturk T, Ertas E, Mert O (2010) A berzelius reagent, phosphorus decasulfide (P4S10), in organic syntheses. Chem Rev 110:3419–3478. https://doi.org/10.1021/cr900243d

  42. Boultif A, Louër D (2004) Powder pattern indexing with the dichotomy method. J Appl Crystallogr 37:724–731. https://doi.org/10.1107/S0021889804014876

    Article  CAS  Google Scholar 

  43. Izumi F, Momma K (2007) Three-dimensional visualization in powder diffraction. Solid State Phenom 130:15–20. 10.4028/ww w.scientific.net/SSP.130.15

    Article  CAS  Google Scholar 

  44. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  45. Dietrich C, Weber DA, Culver S et al. (2017) Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg Chem 56:6681–6687. https://doi.org/10.1021/acs.inorgchem.7b00751

    Article  CAS  Google Scholar 

  46. Dietrich C, Weber DA, Sedlmaier SJ et al. (2017) Lithium ion conductivity in Li2S-P2S5 glasses-building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J Mater Chem A 5:18111–18119. https://doi.org/10.1039/C7TA06067J

    Article  CAS  Google Scholar 

  47. Eckert H, Zhang Z, Kennedy JH (1990) Structural transformation of non-oxide chalcogenide glasses. The short-range order of lithium sulfide (Li2S)-phosphorus pentasulfide (P2S5) glasses studied by quantitative phosphorus-31, lithium-6, and lithium-7 high-resolution solid-state NMR. Chem Mater 2:273–279. https://doi.org/10.1021/cm00009a017

    Article  CAS  Google Scholar 

  48. Pasha I, Choudhury A, Rao CNR (2003) An organically templated open-framework cadmium selenite. Solid State Sci 5:257–262. https://doi.org/10.1016/S1293-2558(02)00100-0

    Article  CAS  Google Scholar 

  49. Wang Y, Yu J, Shi Z, Xu R (2003) Synthesis and characterization of a new layered gallium phosphate [Co(en)3][Ga3(H2PO4) 6(HPO4)3] templated by cobalt complex. J Solid State Chem 170:176–181. https://doi.org/10.1016/S0022-4596(02)00060-9

  50. Liu Y, Pan R, Cheng JW et al. (2015) A series of Aluminoborates templated or supported by zinc-amine complexes. Chemistry 21:15732–15739. https://doi.org/10.1002/chem.201501420

  51. Nakatsu K, Saito Y, Kuroya H (1956) Studies on crystals of metallic Tris-ethylenediamine-complexes. I. The crystal structure of DL-Tris-ethylenediamine-cobalt (III) chloride trihydrate, [Co en3]Cl3 3H2O’. Bull Chem Soc Jpn 29:428–434. https://doi.org/10.1246/bcsj.29.428

  52. Börtin O, Niklewski T, Nygren M et al. (1976) On the crystal structures of cis- and trans-bis(ethylenediamine)dinitrocobalt(III) nitrate. Acta Chem Scand 30a:657–660. https://doi.org/10.3891/acta.chem.scand.30a-0657

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (Grant number 18H05255).

Author information

Authors and Affiliations

Authors

Contributions

TK and AI carried out the synthesis, XRD measurement, Raman spectroscopy, and thermal analysis. TN and HK performed NMR. TK and CH conducted crystal structure analysis. AS, MT, and AH supervised the research. TK wrote the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Akitoshi Hayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Ito, A., Nakano, T. et al. Crystalline precursor derived from Li3PS4 and ethylenediamine for ionic conductors. J Sol-Gel Sci Technol 104, 627–634 (2022). https://doi.org/10.1007/s10971-022-05824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05824-x

Keywords

Navigation