Skip to main content

Advertisement

Log in

Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lightweight and high-strength aerogels are specially required in thermal insulation and thermal protection. However, maintaining light weight and high-strength still represents a formidable challenge. Herein we explore a strategy to introduce polyvinylmethyldimethoxysilane (PVMDMS) into polybenzoxazine (PBO) for enhancing the skeleton, and PVMDMS-PBO aerogels were prepared by sol-gel method and ambient pressure drying. The resulting PVMDMS-PBO aerogels possess a 3D nano-porous network structure, and the density can be as low as 0.11 g/cm3. The compressive strength of PVMDMS-PBO aerogels at 10 % strain (10% ε) is 0.55 MPa, much higher than the 0.12 MPa at 10% ε of the pure PBO aerogels with a similar density of 0.13 g/cm3. With increasing PVMDMS content, the thermal conductivity of PBO aerogel decreased from 0.0489 W/(m·K) to 0.0432 W/(m·K). The peak heat release rate decreased from 125.0 W/g to 91.7 W/g. The lightweight, high strength, excellent flame retardancy and thermal insulation of PVMDMS-PBO aerogels make them conducive to thermal insulation application.

Highlights

  • The PVMDMS-PBO aerogels possess a low density of 0.11g/cm3 by ambient pressure drying.

  • The PVMDMS-PBO aerogels exhibit high compressive strength of 0.55 MPa at 10 % stain.

  • The PVMDMS-PBO aerogels have superior thermal insulation and flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ishida H, Low HY (1997) A Study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules. 30:1099–1106

    Article  CAS  Google Scholar 

  2. Wu J, Xi Y, McCandless GT et al. (2015) Synthesis and characterization of partially fluorinated polybenzoxazine resins utilizing octafluorocyclopentene as a versatile building block. Macromolecules 48:6087–6095

    Article  CAS  Google Scholar 

  3. Zhang K, Liu Y, Han L, Wang J, Ishida H (2019) Synthesis and thermally induced structural transformation of phthalimide and nitrile-functionalized benzoxazine: toward smart ortho-benzoxazine chemistry for low flammability thermosets. RSC Adv 9:1526–1535

    Article  CAS  Google Scholar 

  4. Wang MW, Lin CH, Juang TY (2013) Steric hindrance control synthesis of primary amine-containing benzoxazines and properties of the resulting poly(benzoxazine imide) thermosetting films. Macromolecules 46:8853–8863

    Article  CAS  Google Scholar 

  5. Xiao Y, Li L, Zhang S et al. (2019) Thermally insulating polybenzoxazine aerogels based on 4,4′-diamino-diphenylmethane benzoxazine. J Mater Sci 54(19):12951–12961

    Article  CAS  Google Scholar 

  6. Xiao Y, Li L, Liu F et al. (2020) Compressible, flame-resistant and thermally insulating fiber-reinforced polybenzoxazine aerogel composites. Materials 13(12):2809

    Article  CAS  Google Scholar 

  7. Xiao YY, Li LJ, Zhang SZ et al. (2020) Room temperature oxalic acid-catalyzed, ambient pressure dried, and cost-effective synthesis of polybenzoxazine aerogels for thermal insulation. Adv Eng Mater 2000856:1–8

    Google Scholar 

  8. Xiao Y, Li LJ, Cai HF et al. (2020) In situ co-polymerization of high-performance polybenzoxazine/silica aerogels for flame-retardancy and thermal insulation. J Appl Polym Sci e50333:1–14

    Google Scholar 

  9. Malakooti S, Qin G, Mandal C et al. (2019) (2019) Low-cost, ambient-dried, superhydrophobic, high strength, thermally Insulating, and thermally resilient polybenzoxazine aerogels. ACS Appl Polymer Mater 1:2322–2333

    Article  CAS  Google Scholar 

  10. Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol-Gel Sci Technol 52:56–64

    Article  CAS  Google Scholar 

  11. Mahadik-Khanolkar S, Donthula S, Sotiriou-Leventis C et al. (2014) Polybenzoxazine Aerogels. 1. High-yield Room-temperature acid-catalyzed synthesis of robust monoliths, oxidative aromatization, and conversion to microporous carbons. Chem Mater 26:1303–1317

    Article  CAS  Google Scholar 

  12. Gu S, Li Z, Miyoshi T et al. (2015) Polybenzoxazine aerogels with controllable pore structures. RSC Adv 5:26801–26805

    Article  CAS  Google Scholar 

  13. Far HM, Rewatkar PM, Donthula S et al. (2018) Exceptionally high CO2 adsorption at 273 K by microporous carbons from phenolic aerogels: The role of heteroatoms in comparison with carbons from polybenzoxazine and other organic aerogels. Macromol Chem Phys 1800333:1–16

    Google Scholar 

  14. Mahadik-Khanolkar S, Donthula S, Bang A et al. (2014) Polybenzoxazine aerogels. 2. interpenetrating networks with Iron Oxide and the carbothermal synthesis of highly porous monolithic pure Iron (0) aerogels as energetic materials. Chem Mater 26:1318–1331

    Article  CAS  Google Scholar 

  15. Katanyoota P, Chaisuwan T, Wongchaisuwat A et al. (2010) Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors. Mater Sci Eng B 167:36–42

    Article  CAS  Google Scholar 

  16. Rubenstein DA, Lu H, Mahadik SS et al. (2012) Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold. J Biomater Sci 23:1171–1184

    CAS  Google Scholar 

  17. Xiao Y, Li L, Zhang S et al. (2019) Thermal insulation characteristics of polybenzoxazine aerogels Macromol Mater Eng. 304(7):1900137

    Article  Google Scholar 

  18. Zu G, Shimizu T, Kanamori K et al. (2018) Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano 12(1):521–532

    Article  CAS  Google Scholar 

  19. Zu G, Kanamori K, Maeno A et al. (2018) Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew Chem 57(31):9722–9727

    Article  CAS  Google Scholar 

  20. Zu G, Kanamori K, Shimizu T et al. (2018) Versatile double-cross-linking approach to transparent, machinable, super compressible, highly bendable aerogel thermal superinsulators. Chem Mater 30(8):2759–2770

    Article  CAS  Google Scholar 

  21. Wang L, Feng J, Jiang Y et al. (2019) Thermal conductivity of polyvinylpolymethylsiloxane aerogels with high specific surface area. RSC Adv 9(14):7833–7841

    Article  CAS  Google Scholar 

  22. Wang L, Feng J, Jiang Y et al. (2019) Elastic methyltrimethoxysilane based silica aerogels reinforced with polyvinylmethyldimethoxysilane. RSC Adv 9(19):10948–10957

    Article  CAS  Google Scholar 

  23. Zhang Z, Wang X, Zu G et al. (2019) Resilient, fire-retardant and mechanically strong polyimide-polyvinylpolymethylsiloxane composite aerogel prepared via stepwise chemical liquid deposition. Mater Des 183:108096

    Article  CAS  Google Scholar 

  24. Wu G, Yu Y, Cheng X (2011) Preparation and surface modification mechanism of silica aerogels via ambient pressure drying. Mater Chem Phys 129(1-2):308–314

    Article  CAS  Google Scholar 

  25. Li T, Du A, Zhang T et al. (2018) Efficient preparation of crack-free, low-density and transparent polymethylsilsesquioxane aerogels via ambient pressure drying and surface modification. RSC Adv 8(32):17967–17975

    Article  CAS  Google Scholar 

  26. Wang LK, Feng JZ, Jiang YG, et al. (2019) Polyvinymethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area. Mater Lett 256:126644

  27. Wang LK, Feng JZ, Jiang YG, et al. (2020) Facile fabrication of hydrophobic polyvinypolysilsesquioxane aerogels with improved optical properties. J Sol Gel Sci Technol 94:88–97

  28. Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18(3):255–272

    Article  CAS  Google Scholar 

  29. Wei H, Wang F, Sun H et al. (2018) Benzotriazole-based conjugated microporous polymers as efficient flame retardants with better thermal insulation property. J Mater Chem A 6:8633–8642

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (51702360) and Natural Science Foundation of Hunan Province (2018JJ2469).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunyun Xiao or Jian Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xiao, Y., Zhang, S. et al. Lightweight, strong and thermally insulating polymethylsilsesquioxane- polybenzoxazine aerogels by ambient pressure drying. J Sol-Gel Sci Technol 106, 422–431 (2023). https://doi.org/10.1007/s10971-021-05619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05619-6

Keywords

Navigation